Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lead (Pb) is recognized as one of the most toxic metals. Sources of Pb exposure have been widely documented in North America, and the removal of Pb additives from gasoline was reflected in a dramatic lowering of blood Pb concentration. In Latin America, the removal of Pb from gasoline resulted in decreased exposure, but Pb levels in many areas remain high due to occupational and environmental sources of exposure. While many of the Pb sources have been identified (mining, industries, battery recycling, lead-based paint, ceramics), new ones occasionally crop up. Here we report on blood Pb (B-Pb) levels in remote riverside communities of the Brazilian Amazon. Blood Pb (B-Pb) levels were determined in 448 persons from 12 villages of the Lower Tapajós River Basin, Pará, Brazil. Socio-demographic and dietary information, as well as occupational, residential and medical history was collected using an interview-administered questionnaire. B-Pb, measured by ICP-MS, showed elevated concentrations. Mean B-Pb was 13.1 microg/dL +/- 8.5, median B-Pb was 11.2 microg/dL and ranged from 0.59 to 48.3 microg/dL. Men had higher B-Pb compared to women (median: 15.3 microg/dL vs 7.9 microg/dL respectively). B-Pb increased with age for women, while it decreased for men. For both genders, B-Pb decreased with education. There were significant differences between villages. Exploratory analyses, using linear partition models, showed that for men B-Pb was lower among those who were involved in cattle-raising, and higher among those who hunted, farmed and fished. The distribution profile of B-Pb directed us towards artisanal transformation of manioc to flour (farinha), which requires heating in a large metal pan, with stirring primarily done by young men. In the village with the highest B-Pb, analysis of Pb concentrations (dry weight) of manioc (prior to transformation) and farinha (following transformation) from 6 houses showed a tenfold increase in Pb concentration (mean: 0.017 +/- 0.016 to 0.19 +/- 0.10 microg/g). This was confirmed in one of these villages where we sampled manioc paste (just before roasting) and the roasted farinha (0.05 microg/g vs 0.20 microg/g). While there may be other sources (ammunition, sinkers for fishing nets), the high concentrations in farinha, a dietary staple, assuredly makes an important contribution. Further action needs to reduce Pb sources in this region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2009.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!