The cellular consequences of deficiencies of the mitochondrial OXPHOS system include a variety of direct and secondary changes in metabolite homeostasis, such as ROS, Ca(2+), ADP/ATP, and NAD/NADH. The adaptive responses to these changes include the transcriptional responses of nuclear and mitochondrial genes that are mediated by these metabolites, control of the mitochondria permeability transition pore, and a great variety of secondary signalling elements. Among the transcriptional responses reported over more than a decade using material harboring mtDNA mutations, deletions, or depletions, nuclear and mitochondrial DNA OXPHOS genes have mostly been up-regulated. However, it is evident from the limited data in a variety of disease models that expression responses are highly diverse and inconsistent. In this article, the mechanisms and controlling elements of these transcriptional responses are reviewed. In addition, the elements that need to be evaluated, in order to gain an improved perspective of the manner in which OXPHOS genes respond and impact on mitochondrial disease expression, are highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2009.04.003 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP.
Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease.
Recent Pat Anticancer Drug Discov
January 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China.
Background: BCL-2 was the first gene identified to have antiapoptotic effects, and venetoclax is an oral selective BCL-2 inhibitor, which has great potential in the treatment of patients with acute myeloid leukemia (AML) who are not candidates for intensive therapy. Notably, posaconazole, an oral antifungal drug, is also a strong factor that can affect blood venetoclax concentrations. To the best of our knowledge, the relationship between BCL-2 expression, posaconazole, and venetoclax, as well as their influence on treatment efficacy and the prognosis of patients with AML, has not been reported.
View Article and Find Full Text PDFAbscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission.
View Article and Find Full Text PDFiScience
January 2025
Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
Ischemia and pathological angiogenesis in retinal vascular diseases cause serious vision-related problems. However, the transcriptional regulators of vascular repair remain unidentified. Thus, the factors and mechanisms involved in angiogenesis must be elucidated to develop approaches for restoring normal blood vessels.
View Article and Find Full Text PDFMicrolife
January 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany.
Bacterial small proteins impact diverse physiological processes, however, technical challenges posed by small size hampered their systematic identification and biochemical characterization. In our quest to uncover small proteins relevant for pathogenicity, we previously identified YjiS, a 54 amino acid protein, which is strongly induced during this pathogen's intracellular infection stage. Here, we set out to further characterize the role of YjiS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!