The Plasmodium falciparum var multigene family encodes P. falciparum erythrocyte membrane protein 1, which is responsible for the pathogenic traits of antigenic variation and adhesion of infected erythrocytes to host receptors during malaria infection. Clonal antigenic variation of P. falciparum erythrocyte membrane protein 1 is controlled by the switching between exclusively transcribed var genes. The tremendous diversity of the var gene repertoire both within and between parasite strains is critical for the parasite's strategy of immune evasion. We show that ectopic recombination between var genes occurs during mitosis, providing P. falciparum with opportunities to diversify its var repertoire, even during the course of a single infection. We show that the regulation of the recombined var gene has been disrupted, resulting in its persistent activation although the regulation of most other var genes is unaffected. The var promoter and intron of the recombined var gene are not responsible for its atypically persistent activity, and we conclude that altered subtelomeric cis sequence is the most likely cause of the persistent activity of the recombined var gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898907PMC
http://dx.doi.org/10.1016/j.jmb.2009.04.032DOI Listing

Publication Analysis

Top Keywords

var gene
20
var
12
var genes
12
recombined var
12
ectopic recombination
8
falciparum erythrocyte
8
erythrocyte membrane
8
membrane protein
8
antigenic variation
8
persistent activity
8

Similar Publications

Iodine is a key micronutrient essential for the synthesis of thyroid hormone, which regulates metabolic processes and maintains overall health. Despite its importance, iodine deficiency is a global health issue, leading to disorders such as goiter, hypothyroidism, and developmental abnormalities. Biofortification of crops with iodine is a promising strategy to enhance the dietary iodine intake, providing an alternative to iodized salt.

View Article and Find Full Text PDF

Background: The patterns of inbreeding coefficients () and fine spatial genetic structure (FSGS) were evaluated regarding the mating system and inbreeding depression of food-deceptive orchids, , var. , and , from NE Poland.

Methods: We used 455 individuals, representing nine populations of three taxa and AFLPs, to estimate percent polymorphic loci and Nei's gene diversity, which are calculated using the Bayesian method; ; ; FSGS with the pairwise kinship coefficient (); and AMOVA in populations.

View Article and Find Full Text PDF

Phylogenomic analyses re-evaluate the backbone of Corylus and unravel extensive signals of reticulate evolution.

Mol Phylogenet Evol

January 2025

Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China. Electronic address:

Phylogenomic analyses have shown that reticulate evolution greatly affects the accuracy of phylogenetic inferences, and thus may challenge the authority of bifurcating phylogenetic trees. In this study, we re-evaluated the phylogenetic backbone of the genus Corylus based on complete taxon sampling and genomic data. We assembled 581 single-copy nuclear genes and whole plastomes from 64 genome resequencing datasets to elucidate the reticulate relationships within Corylus.

View Article and Find Full Text PDF

Floricoccus penangensis ML061-4 was originally isolated from the leaf surface of an Assam tea plant (Camellia sinensis var. assamica) from Northern Thailand. To assess the functions encoded by the F.

View Article and Find Full Text PDF

Molecular Epidemiology and Antifungal Susceptibility Profile of Candidozyma Isolates From Argentina.

Mycoses

January 2025

Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.

Background: Epidemiological surveillance of Candidozyma sp. has become important because many species of this new genus have been reported to be responsible for nosocomial outbreaks and to exhibit elevated minimal inhibitory concentrations (MIC) to one or more classes of antifungal drugs.

Objectives: To describe the genetic relationships among Argentinian clinical isolates belonging to the Candidozyma genus and to study the molecular mechanisms associated with antifungal resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!