We examined the interaction between the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a key pest of tomato crops in South America, and its main solitary larval parasitoid, Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae). The pattern of parasitism of T. absoluta by the parasitoid was studied at three scales on tomato crops: plant, leaf, and leaflet. Host density, spatial distributions of both host and parasitoid, percentages of parasitism, variation in the probability and risk of parasitism in relation to host density, and the spatial density dependence were assessed in a horticultural region in Argentina. The spatial distribution of T. absoluta was clumped at all sites and scales, whereas that of P. dignus was much more variable, fitting to negative, positive binomial distributions and to Poisson series. Percentages of parasitism were as follows: site 1, 17.06%; site 2, 27.53%; site 3, 26.47%; site 4, 45.95%. Parasitoid aggregation in relation to host density was found at leaf and leaflet scales. However, the proportion of parasitized hosts was independent of host density. The variability of parasitism rates exhibited at the three spatial scales seems to result in partial refuges for the host, which might contribute to the persistence of the interaction between host and parasitoid. We discuss our field observations in relation to ecological theory and its potential application to the biological control of T. absoluta on tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1603/022.038.0208DOI Listing

Publication Analysis

Top Keywords

host density
16
parasitoid pseudapanteles
8
pseudapanteles dignus
8
hymenoptera braconidae
8
tuta absoluta
8
lepidoptera gelechiidae
8
tomato crops
8
leaf leaflet
8
density spatial
8
host parasitoid
8

Similar Publications

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.

View Article and Find Full Text PDF

The continuous interaction between phages and their respective hosts has resulted in the evolution of multiple bacterial immune mechanisms. However, the diversity and prevalence of antiviral defense systems in complex communities are still unknown. We therefore investigated the diversity and abundance of viral defense systems in 3,038 high-quality bacterial and archaeal genomes from the rumen.

View Article and Find Full Text PDF

Graphene quantum dot-modified CoO/NiCoO yolk-shell polyhedrons as a polysulfide-adsorptive sulfur host for lithium-sulfur batteries.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.

View Article and Find Full Text PDF

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!