A system to isolate lexA-like genes of bacteria directly was developed. It is based upon the fact that the presence of a lexA(Def) mutation is lethal to SulA+ cells of Escherichia coli. This system is composed of a SulA- LexA(Def) HsdR- strain and a lexA-conditional killer vector (plasmid pUA165) carrying the wild-type sulA gene of E. coli and a polylinker in which foreign DNA may be inserted. By using this method, the lexA-like genes of Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa, and P. putida were cloned. We also found that the LexA repressor of S. typhimurium presented the highest affinity for the SOS boxes of E. coli in vivo, whereas the LexA protein of P. aeruginosa had the lowest. Likewise, all of these LexA repressors were cleaved by the activated RecA protein of E. coli after DNA damage. Furthermore, under high-stringency conditions, the lexA gene of E. coli hybridized with the lexA genes of S. typhimurium and E. carotovora but not with those of P. aeruginosa and P. putida.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC209243 | PMC |
http://dx.doi.org/10.1128/jb.173.22.7345-7350.1991 | DOI Listing |
J Bacteriol
March 2022
Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Acinetobacter baumannii poses a great threat in health care settings worldwide, with clinical isolates displaying an ever-evolving multidrug resistance. In strains of A. baumannii, expression of multiple error-prone polymerase genes are corepressed by UmuDAb, a member of the LexA superfamily, and a small protein, DdrR.
View Article and Find Full Text PDFFront Microbiol
December 2017
Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States.
Recently, controllable, targeted proteolysis has emerged as one of the most promising new strategies to study essential genes and otherwise toxic mutations. One of the principal limitations preventing the wider adoption of this approach is due to the lack of easily identifiable species-specific degrons that can be used to trigger the degradation of target proteins. Here, we report new advancements in the targeted proteolysis concept by creating the first prokaryotic N-terminal targeted proteolysis system.
View Article and Find Full Text PDFEnviron Sci Process Impacts
June 2016
School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
Here, we constructed an Escherichia coli recA::luxCDABE bioreporter for genotoxicity assessments. The recA promoter was cloned from the marine bacterium Vibrio natriegens. This bioreporter showed a dose-response relationship following induction by mitomycin C, and other pollutants or environmental samples could be calculated as mitomycin C equivalents, which provided a way to quantitatively compare the genotoxicities of different environmental samples.
View Article and Find Full Text PDFPLoS One
August 2016
Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America.
In many bacteria, the DNA damage response induces genes (SOS genes) that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD). Upon DNA damage, LexA cleaves itself and allows induction of transcription.
View Article and Find Full Text PDFJ Bacteriol
March 2015
Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
The presence of multidrug-tolerant persister cells within microbial populations has been implicated in the resiliency of bacterial survival against antibiotic treatments and is a major contributing factor in chronic infections. The mechanisms by which these phenotypic variants are formed have been linked to stress response pathways in various bacterial species, but many of these mechanisms remain unclear. We have previously shown that in the cariogenic organism Streptococcus mutans, the quorum-sensing peptide CSP (competence-stimulating peptide) pheromone was a stress-inducible alarmone that triggered an increased formation of multidrug-tolerant persisters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!