Toxic agents can interfere with the male reproductive system at many targets. One of the major unresolved questions concerning male infertility is identification of its molecular origins. Clinical and animal studies indicate that abnormalities of spermatogenesis result from exposure to three toxic metals (lead acetate, cadmium chloride, and arsenic trioxide), but the effects on primary spermatocyte DNA of the male rat after chronic exposure to these metals have not been identified. The aims of this study were to analyze, in three independent experiments, the DNA damage induced by lead (Pb), cadmium (Cd), and arsenic (As) in rat germinal cells during three time periods, and to determine the relationship between DNA damage and blood Pb, blood Cd, and urine As levels. For lead acetate and cadmium chloride experiments, blood was collected by cardiac puncture, while for arsenic trioxide a 24-h urine sample was collected. Afterward, the animals were sacrificed by decapitation. Pachytene spermatocytes from rat testes were purified by trypsin digestion followed by centrifugal elutriation. After establishment of cell purity and viability, DNA damage (tail length) was measured employing a single cell gel/comet assay. Significant DNA damage was found in primary spermatocytes from rats with chronic exposure (13 weeks) to toxic metals. In conclusion, these findings indicate that exposure to toxic metals affects primary spermatocyte DNA and are suggestive of possible direct testicular toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.2009.0860 | DOI Listing |
Drug Des Devel Ther
January 2025
The Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China.
Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFInt J Clin Exp Pathol
December 2024
School of Stomatology, Hunan University of Medicine No. 492 Jinxi South Road, Huaihua 418000, Hunan, China.
Background: B-cell specific Moloney MLV insertion site-1 (Bmi-1) belongs to the polycomb group (PcG) gene and is a transcriptional suppressor to maintain appropriate gene expression patterns during development. To investigate whether the Bmi-1 gene has a corrective effect on bone senescence induced in Bmi-1 mice through regulating the bone microenvironment.
Methods: Littermate heterozygous male and female mice (Bmi-1) were used in this study.
Euroasian J Hepatogastroenterol
December 2024
Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan.
Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.
Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.
Toxicol Rep
June 2025
University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
Imidazo based heterocyclic derivatives are considered as privileged scaffolds due to their presence in various pharmacologically active compounds and in marketed formulations. The present study reports toxicological evaluation of three imidazo based heterocyclic derivatives which are currently being investigated for their potential anticancer activity. Compounds IG-01-007, IG-01-008, and IG-01-009 were assessed for cytotoxicity, hemolysis, and DNA fragmentation activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!