Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca(2+) levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2009.2625DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
12
oxidative stress
12
unfolded protein
8
protein response
8
endoplasmic reticulum
8
mitochondrial electron
8
electron transport
8
ros generation
8
stress
6
upr
6

Similar Publications

Background: Intracerebral hemorrhage (ICH) is a severe condition associated with high mortality and disability rates. Oxidative stress plays a critical role in the development of secondary brain injury (SBI) following ICH. Previous research has demonstrated that Annao Pingchong decoction (ANPCD) treatment for ICH has antioxidant effects, but the exact mechanism is not yet fully understood.

View Article and Find Full Text PDF

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, (), through phytochemical characterization using liquid chromatography-mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified.

View Article and Find Full Text PDF

Enhancing Ferroptosis-Mediated Radiosensitization Synergistic Disulfidptosis Induction.

ACS Nano

December 2024

Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P.R. China.

Ferroptosis plays an important role in radiotherapy (RT), and the induction of ferroptosis can effectively sensitize radiotherapy. However, the therapeutic efficiency is always affected by ferroptosis resistance, especially SLC7A11 (Solute Carrier Family 7 Member 11)-cystine-cysteine-GSH (glutathione)-GPX4 (glutathione peroxidase 4) pathway-mediated resistance. In this study, tumor-microenvironment self-activated high-Z element-containing nanoferroptosis inducers, PEGylated Fe-Bi-SS metal-organic frameworks (FBSP MOFs), were developed to sensitize RT.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the role of Cytochrome b-245 chaperone 1 (CYBC1) in glioblastoma (GBM) progression, focusing on its involvement in reactive oxygen species (ROS) production and associated signaling pathways. Understanding the molecular mechanisms driven by CYBC1 could provide new therapeutic targets and prognostic markers for GBM.

Materials And Methods: Publicly available datasets were analyzed to assess CYBC1 expression in GBM and its correlation with patient survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!