Genomic microarrays have been implemented in the diagnosis of patients with unexplained mental retardation. This method, although revolutionizing cytogenetics, is still limited to the detection of rare de novo copy number variants (CNVs). Genome-wide single nucleotide polymorphism (SNP) microarrays provide high-resolution genotype as well as CNV information in a single experiment. We hypothesize that the widespread use of these microarray platforms can be exploited to greatly improve our understanding of the genetic causes of mental retardation and many other common disorders, while already providing a robust platform for routine diagnostics. Here we report a detailed validation of Affymetrix 500k SNP microarrays for the detection of CNVs associated to mental retardation. After this validation we applied the same platform in a multicenter study to test a total of 120 patients with unexplained mental retardation and their parents. Rare de novo CNVs were identified in 15% of cases, showing the importance of this approach in daily clinical practice. In addition, much more genomic variation was observed in these patients as well as their parents. We provide all of these data for the scientific community to jointly enhance our understanding of these genomic variants and their potential role in this common disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.21015DOI Listing

Publication Analysis

Top Keywords

mental retardation
20
patients unexplained
12
unexplained mental
12
multicenter study
8
rare novo
8
snp microarrays
8
mental
5
retardation
5
molecular karyotyping
4
patients
4

Similar Publications

Unlabelled: We investigated the impact of participation in post-secondary university education (PSE) on the academic knowledge of adult students with severe intellectual disability and extensive support needs (SIDESN) vs. a similar group of controls who did not participate in PSE. We also examined whether the PSE would result in a "near transfer" to basic crystallized (facts and information) and fluid (problems involving executive functions and working memory) cognitive abilities, the contribution of background characteristics and crystallized and fluid abilities to their academic knowledge, semantic fluency and temporal relations.

View Article and Find Full Text PDF

The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway.

Cell Rep

January 2025

Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.

View Article and Find Full Text PDF

Animal models of kabuki syndrome and their applicability to novel drug discovery.

Expert Opin Drug Discov

January 2025

Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Use of the Adaptive Behaviour Dementia Questionnaire in a Down Syndrome Specialty Clinic.

J Integr Neurosci

January 2025

Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA.

Objective: To study the use of a dementia screening tool in our clinic cohort of adults with Down syndrome.

Study Design: A retrospective chart review of patients with Down syndrome was conducted to follow the use of the Adaptive Behaviour Dementia Questionnaire (ABDQ) in a dementia screening protocol. The ABDQ results for patients aged 40 years and older at a Down syndrome specialty clinic program were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!