The present study was designed to assess and compare with a range of surfactant-coated, nimesulide-free, and nimesulide-loaded ethylcellulose/methylcellulose (EC/MC) nanoparticles that were prepared by varying drug concentration (ED/MD), polymer concentration (EP/MP), and surfactant concentration (ES/MS). EC/MC nanoparticles prepared by desolvation method produced discrete particles and they were characterized by SEM, AFM, and FTIR studies. The particles mean size diameter (nm) ranged from 244 to 1056 nm and 1065 to 1710 nm for EC and MC nanoparticles, respectively. Studies on drug: polymer ratio showed a linear relationship between drug concentration and percentage of loading in nanoparticles. The encapsulation efficiency decreased with the increase of nimesulide concentration with respect to polymer concentration. Encapsulation efficiency of drug-loaded nanoparticles was varied between 32.8% and 64.9%. The in vitro release of drug-loaded nanoparticles was found to be a first order. This was significantly increased in EC nanoparticles (95.50%) in comparison with MC nanoparticles (95.12%) after 12 h in 24 h long study. Nimesulide release from EC nanoparticles was much slower at slightly alkaline pH 7.4. The in vitro hemolysis tests of nanoparticles were carried out to ascertain the hemocompatibility and shown to be insignificant for EC nanoparticles. In comparison, ES4 from EC formulations with nimesulide was found to be promising with slow and sustained drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0885328209103406 | DOI Listing |
Neuro Oncol
January 2025
Department of Medicine, Division of Experimental Medicine, McGill University.
Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.
View Article and Find Full Text PDFBraz J Biol
January 2025
Near East University, Operational Research Center in Healthcare, Mersin, Turkey.
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.
View Article and Find Full Text PDFAnal Chem
January 2025
Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China.
Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.
Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!