Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite the clear roles played by peroxisome proliferators-activated receptor alpha (PPAR-alpha) in lipid metabolism, inflammation and feeding, the effects of its activation in the central nervous system (CNS) are largely unknown. Palmitoylethanolamide (PEA), a member of the fatty-acid ethanolamide family, acts peripherally as an endogenous PPAR-alpha agonist, exerting analgesic and anti-inflammatory effects. Both PPAR-alpha and PEA are present in the CNS, but the specific functions of this lipid and its receptor remain to be clarified. Using the carrageenan-induced paw model of hyperalgesia in mice, we report here that intracerebroventricular administration of PEA (0.1-1 microg) 30 min before carrageenan injection markedly reduced mechanical hyperalgesia up to 24 h following inflammatory insult. This effect was mimicked by GW7647 (1 microg), a synthetic PPAR-alpha agonist. The obligatory role of PPAR-alpha in mediating PEA's actions was confirmed by the lack of anti-hyperalgesic effects in mutant mice lacking PPAR-alpha. PEA significantly reduced the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in sciatic nerves and restored carrageenan-induced reductions of PPAR-alpha in the L4-L6 dorsal root ganglia (DRG). To investigate the mechanism by which PEA attenuated hyperalgesia, we evaluated inhibitory kB-alpha (IkB-alpha) degradation and p65 nuclear factor kB (NF-kappaB) activation in DRG. PEA prevented IkB-alpha degradation and p65 NF-kappaB nuclear translocation, confirming the involvement of this transcriptional factor in the control of peripheral hyperalgesia. These results add further support to the broad-spectrum of biological and pharmacological effects induced by PPAR-alpha agonists, suggesting a centrally mediated component for these drugs in controlling inflammatory pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2009.04.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!