In this prospective, randomized, double-blind study, the effect of Pulsed Electromagnetic Fields (PEMFs) was investigated in 30 subjects undergoing hip revision using the Wagner SL stem. The subjects were treated for 6 h/day up to 90 days after revision. Study end points were assessed clinically by the functional scale of Merle D'Aubigné and instrumentally by Dual-Energy X-ray Absorptiometry (DXA) at the Gruen zones. Subject improvement according to Merle D'Aubigné scale was higher (P < 0.05) in subjects undergoing active stimulation compared to placebo. In analyzing the DXA findings, we subtracted for each area the postoperative bone mineral density (BMD) values from those measured at 90 days and we considered all results above 3.5% as responders. There were no significant differences in the average BMD values at each Gruen zone between the two groups both postoperatively and at 90 days investigation. In Gruen zones 5 and 6, corresponding to the medial cortex, we observed six responders (40%) in both areas in the control group, while in the stimulated group we observed 14 (93%) and 10 (66%) responders, respectively (both P < 0.05). This study showed that PEMF treatment aids clinical recovery and bone stock restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.20492 | DOI Listing |
Nano Lett
January 2025
Regensburg Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany.
Detecting electromagnetic radiation scattered from a tip-sample junction has enabled overcoming the diffraction limit and started the flourishing field of polariton nanoimaging. However, most techniques only resolve amplitude and relative phase of the scattered radiation. Here, we utilize field-resolved detection of ultrashort scattered pulses to map the dynamics of surface polaritons in both space and time.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Purchase College SUNY, School of Natural and Social Sciences, 735 Anderson Hill Rd, Purchase, NY, 10577, USA.
For the first time, rotational constants along with centrifugal distortion constants have been determined for OThS and OCeS. The rotational spectra of these molecules and, in each case, one other isotopologue (OThS and OCeS) were produced utilizing a laser ablation sourcing technique incorporated into a chirped-pulse Fourier transform microwave spectrometer operating in the 8 to 18 GHz region of the electromagnetic spectrum. The bent structures determined are in very good agreement with theoretical calculations.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopedic Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, USA.
This review examines intrinsic and extrinsic augmentation techniques for uniting hand and upper extremity fractures, including bone morphogenic proteins (BMPs), platelet-rich plasma (PRP), low-intensity pulsed ultrasound (LIPUS), and pulsed electromagnetic fields (PEMF). While BMPs, PRP, LIPUS, and PEMF show potential in accelerating bone healing and reducing nonunion rates, their clinical adoption is limited by high costs and inconsistent results. This paper focuses on understanding the efficacy of these techniques, their drawbacks, and potential next steps for the field.
View Article and Find Full Text PDFJ Biotechnol Biomed
November 2024
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA.
Traumatic brain injury (TBI) is one of the growing public health problems and a leading cause of disabilities and mortality worldwide. After the mechanical impact to the head, patients of all ages suffer from cognitive and neurological deficits, as well as psychological disorders to different extents. In the last years, the use of electrical impulses and magnetic currents to achieve therapeutic effects have shown promising results and became potential treatments for TBI.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
Department of Aircraft Manufacturing Engineering, School of Aerospace Engineering, Guizhou Institute of Technology, Guiyang, China.
The application of a pulsed magnetic field (PMF) during a metallurgy solidification process has proven to be an effective method in refining the grain size and improving the mechanical performance of the material. However, fewer works were reported in the realm of laser additive manufacturing (LAM) and the mechanism of grain refinement consequent to the PMF is still unclear. In this work, numerical models were developed to study the thermal-fluid characteristics in the Ti-alloy melt pool generated during the laser scanning process under the effect of a combined direct current (DC) electric field and PMF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!