Kit is a membrane-bound tyrosine kinase and receptor for stem cell factor (SCF) with a crucial role in hematopoiesis. Mutations of KIT occur in almost half of patients with core-binding factor leukemias, in which they have been associated with worse outcome. Development of new compounds targeting Kit may therefore hold promise for therapy. We investigated the activity and mechanism of action of APcK110, a novel Kit inhibitor, in the mastocytosis cell line HMC1.2 (KITV560G and KITD816V), acute myeloid leukemia (AML) lines OCIM2 and OCI/AML3 (both wild-type), and primary samples from patients with AML. We show that (a) APcK110 inhibits proliferation of the mastocytosis cell line HMC1.2 and the SCF-responsive cell line OCI/AML3 in a dose-dependent manner; (b) APcK110 is a more potent inhibitor of OCI/AML3 proliferation than the clinically used Kit inhibitors imatinib and dasatinib and at least as potent as cytarabine; (c) APcK110 inhibits the phosphorylation of Kit, Stat3, Stat5, and Akt in a dose-dependent fashion, showing activity of APcK110 on Kit and its downstream signaling pathways; (d) APcK110 induces apoptosis by cleavage of caspase-3 and poly(ADP-ribose) polymerase; and (e) APcK110 inhibits proliferation of primary AML blasts in a clonogenic assay but does not affect proliferation of normal colony-forming cells. Although APcK110 activity may partly depend on cytokine responsiveness (e.g., SCF) and not exclusively KIT mutation status, it remains a potent inhibitor of AML and mastocytosis cell lines and primary AML samples. APcK110 and similar compounds should be evaluated in clinical trials of patients with AML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220548 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-08-0034 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.
It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.
View Article and Find Full Text PDFCancer Res
January 2025
University of California, San Diego, La Jolla, CA, United States.
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B).
View Article and Find Full Text PDFIUBMB Life
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting.
View Article and Find Full Text PDFEndocr Relat Cancer
January 2025
C Alvarez, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
The discovery of RET mutations in Multiple Endocrine Neoplasia 2A (MEN2A) in 1993 ignited a revolution in our understanding of this versatile receptor. Since then, RET's influence has expanded to encompass diverse organs, including the pituitary gland. This review explores the multifaceted role of RET in somatotrophs, focusing on two opposing pathways: proliferation versus differentiation and apoptosis.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Neural precursor cells (NPCs) are a group of cells with self-renewal and multi-differentiation potential. MicroRNAs are required for neurogenesis in the central nervous system (CNS). Recent reports suggest that miR-1224 is important in human CNS diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!