Association kinetics from single molecule force spectroscopy measurements.

Biophys J

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

Published: April 2009

AI Article Synopsis

Article Abstract

Single molecule force spectroscopy is often used to study the dissociation of single molecules by applying mechanical force to the intermolecular bond. These measurements provide the kinetic parameters of dissociation. We present what to our knowledge is a new atomic force microscopy-based approach to obtain the activation energy of the association reaction and approximate grafting density of reactive receptors using the dependence of the probability to form molecular bonds on probe velocity when one of the interacting molecules is tethered by a flexible polymeric linker to the atomic force microscopy probe. Possible errors in the activation energy measured with this approach are considered and resulting corrections are included in the data analysis. This new approach uses the same experimental setup as traditional force spectroscopy measurements that quantify dissociation kinetics. We apply the developed methodology to measure the activation energy of biotin-streptavidin association (including a contribution from the steric factor) and obtain a value of 8 +/- 1 kT. This value is consistent with the association rate measured previously in solution. Comparison with the solution-derived activation energy indicates that kinetics of biotin-streptavidin binding is mainly controlled by the reaction step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718322PMC
http://dx.doi.org/10.1016/j.bpj.2009.01.031DOI Listing

Publication Analysis

Top Keywords

activation energy
16
force spectroscopy
12
single molecule
8
molecule force
8
spectroscopy measurements
8
atomic force
8
force
6
association
4
association kinetics
4
kinetics single
4

Similar Publications

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.

View Article and Find Full Text PDF

Application of Biochar-Immobilized for Enhancing Phosphorus Uptake and Growth in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!