Painful diabetic neuropathy causes hyperalgesia and does not respond to commonly used analgesics such as non-steroidal anti-inflammatory drugs or opioids at doses below those producing disruptive side effects. In the present study, we examined the effect of P2X receptor antagonists, which are known to modulate the pain pathway, on mechanical hyperalgesia in streptozotocin (STZ)-induced diabetic mice. The paw withdrawal frequency measured by von Frey filaments, began to significantly increase 5 days after STZ injection and was maintained for more than 14 days. Intrathecal administration of P2X receptor antagonists (PPADS and TNP-ATP) inhibited the mechanical allodynia in diabetic mice. The levels of P2X(2) and P2X(3) receptors mRNA were significantly increased in diabetic mice at 14 days after the intravenous injection of STZ. These results suggest that the upregulation of P2X(2), P2X(3) and/or P2X(2/3) receptor in DRG neurons is associated with mechanical allodynia in STZ-induced diabetic mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2009.01.048DOI Listing

Publication Analysis

Top Keywords

diabetic mice
16
diabetic neuropathy
8
p2x receptor
8
receptor antagonists
8
stz-induced diabetic
8
mechanical allodynia
8
p2x2 p2x3
8
diabetic
6
modulation p2x
4
p2x receptors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!