High-sensitivity amperometric biosensors based on ferrocene-modified linear poly(ethylenimine).

Langmuir

School of Chemical, Biological, and Materials Engineering, Department of Chemistry and Biochemistry, University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019, USA.

Published: July 2009

Amperometric biosensors for glucose and hydrogen peroxide have been built by immobilizing glucose oxidase (GOX) and horseradish peroxidase (HRP) in cross-linked films of ferrocene-modified linear poly(ethylenimine). At pH 7, the glucose sensors generated limiting catalytic current densities of 1.2 mA/cm2. These current densities are approximately 4 times higher than those with other ferrocene-based redox polymers and are comparable to the highest reported values for osmium-based redox polymers with GOX. Because of the high sensitivity of these films (73 nA/cm2.microM), glucose concentrations in the micromolar range could be detected. Similarly, sensors were constructed with HRP-generated current densities of 0.9 mA/cm2 under saturation conditions and sensitivities of 500 nA/cm2.microM. The results show that the ability of Fc-LPEI to effectively communicate with a variety of enzymes has potential applications in measuring low substrate concentrations in implantable biosensors and producing high current outputs in enzymatic biofuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la9004938DOI Listing

Publication Analysis

Top Keywords

current densities
12
amperometric biosensors
8
ferrocene-modified linear
8
linear polyethylenimine
8
densities ma/cm2
8
redox polymers
8
high-sensitivity amperometric
4
biosensors based
4
based ferrocene-modified
4
polyethylenimine amperometric
4

Similar Publications

Metallic Zn is a promising anode for high-safety, low-cost, and large-scale energy storage systems. However, it is strongly hindered by unstable electrode/electrolyte interface issues, including zinc dendrite, corrosion, passivation, and hydrogen evolution reactions. In this work, an in situ interface protection strategy is established by turning the corrosion/passivation byproducts (zinc hydroxide sulfates, ZHSs) into a stable hybrid protection layer.

View Article and Find Full Text PDF

Improved Conductivity of 2D Perovskite Capping Layer for Realizing High-Performance 3D/2D Heterostructured Hole Transport Layer-Free Perovskite Photovoltaics.

ACS Nano

January 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.

View Article and Find Full Text PDF

Gradient Design with Low-tortuosity Overcoming Kinetic Limitations in High-Loading Solid-State Cathodes.

Angew Chem Int Ed Engl

January 2025

UT Austin: The University of Texas at Austin, Materials Science and Engineering, 1 University Station C2200, 78712, Austin, UNITED STATES OF AMERICA.

The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely delayed in thick cathodes due to tortuous ion transport pathways and slow solid-solid ion diffusion, which limit the achievable capacity of SSBs at high current densities. In this work, we propose a conductivity gradient cathode with low-tortuosity to enable facile ion transport and counterbalance ion concentration gradient, thereby overcoming the kinetic limitations and achieving fast charging capabilities in thick cathodes.

View Article and Find Full Text PDF

Eu-Gd co-doped glasses composed of 15BO-12SiO-(40-x)TeO-3EuO-xGdO-12BiO-8BaO-10ZnO with x = 0-4 mol% (coded as EuGd-x) were fabricated using melt quench approach to develop transparent radiation shielding system. Their structural, optical and mechanical properties were examined. 5.

View Article and Find Full Text PDF

Background: Malaria remains a leading cause of death worldwide, claiming over 600,000 lives each year. Over 90% of these deaths, mostly among children under 5 years, occur in sub-Saharan Africa and are caused by Plasmodium falciparum. The merozoites stage of the parasite, crucial for asexual development invade erythrocytes through ligand-receptor interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!