In any microarray hybridization experiment, there are contributions at each probe spot due to the match and numerous mismatch target species (i.e., cross-hybridizations). One goal of temperature optimization is to minimize the contribution of mismatch species; however, achieving this goal may come at the expense of obtaining equilibrium reaction conditions. We employ two-component thermodynamic and kinetic models to study the trade-offs involved in temperature optimization. These models show that the maximum selectivity is achieved at equilibrium, but that the mismatch species controls the time to equilibrium via the competitive displacement mechanism. Also, selectivity is improved at lower temperatures. However, the time to equilibrium is also extended, so that greater selectivity cannot be achieved in practice. We also employ a two-color real-time microarray reader to experimentally demonstrate these effects by independently monitoring the match and mismatch species during multiplex hybridization. The only universal criterion that can be employed is to optimize temperature based upon attaining equilibrium reaction conditions. This temperature varies from one probe to another, but can be determined empirically using standard microarray experimentation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-59745-538-1_12 | DOI Listing |
Bot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFSci Rep
January 2025
Department of CSE, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.
View Article and Find Full Text PDFSci Rep
January 2025
Xingtai Naknor Technology Co., Ltd, Xingtai, 054000, China.
The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.
View Article and Find Full Text PDFSci Rep
January 2025
School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany.
Finger amputations following complex hand injuries (CHI) pose a significant challenge in hand surgery due to severe tissue trauma and neurovascular damage, necessitating precise arterial repair. While restoring arterial perfusion is critical, it remains unclear whether reconstructing both proper palmar digital arteries is required for optimal outcomes. This study evaluates whether restoring one or both arteries in finger replantation after complex injuries impacts perfusion and overall outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!