Selective removal of hexavalent chromium ions from aqueous solutions using a chitosan/gold nanoparticles composite film was demonstrated. Localized surface plasmon resonance (LSPR) was used to measure the interface stability and detect the incorporation of chromium ions over time. The effects of pH, ethylenediaminetetraacetic acid (EDTA), and various foreign ions such as trivalent chromium, sodium, calcium, phosphate, sulfate and chloride on the adsorption of hexavalent chromium were investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b817140h | DOI Listing |
ACS Nano
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada.
Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Pediatric Rheumatology, Zeynep Kamil Women and Children's Diseases Training and Research Hospital, Istanbul, Turkey.
Introduction/objectives: The study aimed to determine whether in children with newly diagnosed juvenile idiopathic arthritis (JIA) hepatitis B surface antibody (anti-HBs) differs from healthy children and to see whether the revaccination is safe and effective under JIA treatment.
Methods: Patients who were followed up with a diagnosis of JIA between January 2020 and February 2024 were included. The control group consisted of healthy children matched for age and gender.
ACS Nano
January 2025
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States.
Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons.
View Article and Find Full Text PDFBackground: It is generally accepted that the greater palatine nerve and artery supply the palatal mucosa, gingiva, and glands, but not the bone or tooth adjacent to those tissues. When the bony palate is observed closely, multiple small foramina are seen on the palatal surface of the alveolar process. The authors hypothesized that the greater palatine nerve and artery might supply the maxillary teeth via the foramina on the palatal surface of the alveolar process and the superior alveolar nerve and artery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!