Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy.

Appl Opt

Centre for Biomedical Engineering and School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.

Published: April 2009

We present the hygroscopicity of polymer and copolymer materials in the low terahertz (THz) frequency range using a linear absorption model. We identify COC 6013 and COC 5013 as optimal THz window materials, possessing both low hygroscopicity and high transmission in the THz regime. The correct choice of window material is of significance for transmission THz spectroscopy and of particular interest for THz liquid spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.48.002262DOI Listing

Publication Analysis

Top Keywords

hygroscopicity polymer
8
polymer copolymer
8
copolymer materials
8
transmission thz
8
thz
5
sensing hygroscopicity
4
materials terahertz
4
terahertz time-domain
4
time-domain spectroscopy
4
spectroscopy hygroscopicity
4

Similar Publications

Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups.

ACS Nano

January 2025

CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium-indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer.

View Article and Find Full Text PDF

HEMA-free versus HEMA-containing adhesive systems: a systematic review.

Syst Rev

January 2025

Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.

Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.

View Article and Find Full Text PDF

Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated.

View Article and Find Full Text PDF

Designing sustained release from nanofiber patch for paclitaxel as prospective localized nanotherapeutic delivery in breast cancer.

Int J Pharm

January 2025

Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India. Electronic address:

The second most prevalent cause of mortality among women is breast cancer, and paclitaxel (PTX) is an effective drug for its treatment. The present work aims to develop patch-based poly(ε-caprolactone) (PCL) nanofibers incorporating PTX as a localized and sustained drug delivery system. The co-deposition of poly(vinyl alcohol) (PVA) fibers during electrospinning was allowed to improve water absorption by the scaffold, which in turn facilitated the release of drug molecules.

View Article and Find Full Text PDF

Solar Evaporator with Dual Gradient Heating Effect for Sustained and Efficient Desalination.

Small

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

Solar desalination shows promise in tackling freshwater shortages, but challenges arise from the trade-off between water transportation and heat supply, affecting evaporators' efficiency and salt resistance. Additionally, intermittent nature of solar radiation significantly diminishes overall evaporative performance. This study presents dual-gradient heating solar evaporator for efficient desalination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!