Polarization dynamics in optical ground wire network.

Appl Opt

Fiber Optics Group, Physics Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Published: April 2009

We report the polarization dynamics in an optical ground wire (OPGW) network for a summer period and a fall period for what is believed to be the first time. To better observe the surrounding magnetic fields contribution to modulating the state of polarization (SOP) we installed a Faraday rotating mirror to correct reciprocal birefringence from quasi-static changes. We also monitored the OPGW while no electrical current was present in the towers' electrical conductors. The spectral analysis, the arc length mapped out over a given time interval on a Poincaré sphere, histograms of the arc length, and the SOP autocorrelation function are calculated to analyze the SOP changes. Ambient temperature changes, wind, Sun-induced temperature gradients, and electrical current all have a significant impact on the SOP drift in an OPGW network. Wind-generated cable oscillations and Sun-induced temperature gradients are shown to be the dominant slow SOP modulations, while Aeolian vibrations and electrical current are shown to be the dominant fast SOP modulations. The spectral analysis revealed that the electrical current gives the fastest SOP modulation to be 300 Hz for the sampling frequency of 1 KHz. This has set the upper speed limit for real-time polarization mode dispersion compensation devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.48.002214DOI Listing

Publication Analysis

Top Keywords

electrical current
16
polarization dynamics
8
dynamics optical
8
optical ground
8
ground wire
8
opgw network
8
spectral analysis
8
arc length
8
sun-induced temperature
8
temperature gradients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!