Recent advances in neuroblastoma.

Curr Opin Pediatr

Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555-0353, USA

Published: June 2009

Purpose Of Review: Although there have been recent advances with multimodal therapy, treatment of neuroblastoma remains a clinical challenge. Despite the identification of several genetic features, there has not been a significant increase in 5-year survival in the last decade. This review will highlight the current operative strategies along with new research developments aimed at improving survival.

Recent Findings: The goal of surgical intervention in the early stages of neuroblastoma is complete curative resection. In advanced-stage disease, tissue biopsy for staging is the initial goal. In recent years, minimally invasive surgery (MIS) is considered in carefully selected patients. Recent advances in neuroblastoma research have focused on tyrosine kinase inhibition, differentiation, pathway inhibition, and immunotherapy. Several of these targets have shown promising results in vivo and are currently under investigation for potential clinical trials.

Summary: New information on the importance of cell signaling and the targeting of specific genes of interest are providing key insights into neuroblastoma. Only through the discovery of novel treatment strategies made available through the advancement of research will neuroblastoma be survivable for patients with advanced-stage disease.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MOP.0b013e32832b1240DOI Listing

Publication Analysis

Top Keywords

advances neuroblastoma
8
advanced-stage disease
8
neuroblastoma
5
neuroblastoma purpose
4
purpose review
4
review advances
4
advances multimodal
4
multimodal therapy
4
therapy treatment
4
treatment neuroblastoma
4

Similar Publications

In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.

View Article and Find Full Text PDF

Background/aim: Karyopherin alpha 2 (KPNA2) has been reported to be associated with cancer aggressiveness and treatment resistance via transporting several cargo proteins into the nucleus, such as cancer-promoting E2F and DNA repair-related MRN complex. Recent studies have highlighted the KPNA2 functions in tumorigenesis and the progression of various cancers. However, the importance of KPNA2 expression has yet to be elucidated in clinical neuroblastoma patients.

View Article and Find Full Text PDF

NIR Light-Triggered Structural Modulation of Self-Assembled Prion Protein Aggregates.

Small

January 2025

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea.

The self-replication of misfolded prion protein (PrP) aggregates is the major pathological event of different prion diseases, affecting mammal brains by cross-species transmission. Here, the structural modulation of PrP aggregates are reported by activated carbon materials upon near-infrared (NIR) light irradiation. Activated carbon cobalt (ACC) nanosheets are synthesized using glycerol and metal salts to utilize the charge carriers released under NIR light exposure.

View Article and Find Full Text PDF

The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.

View Article and Find Full Text PDF

Cancer immunotherapy, specifically Chimeric Antigen Receptor (CAR)-T cell therapy, represents a significant breakthrough in treating cancers. Despite its success in hematological cancers, CAR-T exhibits limited efficacy in solid tumors, which account for more than 90% of all cancers. Solid tumors commonly present unique challenges, including antigen heterogeneity and complex tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!