Telomeric RNAs mark sex chromosomes in stem cells.

Genetics

Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114.

Published: July 2009

Telomeric regions are known to be transcribed in several organisms. Although originally reported to be transcribed from all chromosomes with enrichment near the inactive X of female cells, we show that telomeric RNAs in fact are enriched on both sex chromosomes of the mouse in a developmentally specific manner. In female stem cells, both active Xs are marked by the RNAs. In male stem cells, both the X and the Y accumulate telomeric RNA. Distribution of telomeric RNAs changes during cell differentiation, after which they associate only with the heterochromatic sex chromosomes of each sex. FISH mapping suggests that accumulated telomeric RNAs localize at the distal telomeric end. Interestingly, telomeric expression changes in cancer and during cellular stress. Furthermore, RNA accumulation increases in Dicer-deficient stem cells, suggesting direct or indirect links to RNAi. We propose that telomeric RNAs are tied to cell differentiation and may be used to mark pluripotency and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710151PMC
http://dx.doi.org/10.1534/genetics.109.103093DOI Listing

Publication Analysis

Top Keywords

telomeric rnas
20
stem cells
16
sex chromosomes
12
telomeric
9
cells telomeric
8
cell differentiation
8
cells
5
rnas
5
rnas mark
4
sex
4

Similar Publications

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Dealing with infections is a daily challenge for wild animals. Empirical data show an increase in reactive oxygen species (ROS) production during immune response. This could have consequences on telomere length, the end parts of linear chromosomes, commonly used as proxy for good health and ageing.

View Article and Find Full Text PDF

Objective: A pathogenetic role of CD8+ T lymphocytes in radiographic axial spondyloarthritis (r-axSpA) and other spondyloarthritis (SpA) is sustained by genome-wide association studies (GWAS) and by the expansion of public T cell clonotypes in the target tissues. This study investigates the migration of CD8+ T cells, along with their phenotype and functions in patients with r-axSpA and psoriatic arthritis (PsA).

Methods: Peripheral blood CD8+ and CD4+ T cells were isolated from r-axSpA (n= 128), PsA (n= 60) and rheumatoid arthritis (RA, n= 74) patients and healthy donors (HD, n= 79).

View Article and Find Full Text PDF

Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease.

Circ Res

January 2025

Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).

Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.

View Article and Find Full Text PDF

Relationships between cellular senescence and gastrointestinal cancers have gained prominence in recent years. The currently accepted theory suggests that cellular senescence and cancer occurrence exhibit "double-edged sword" effects. Cellular senescence is related to cancer via four "meta-hallmarks" i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!