Myeloid-derived suppressor cells (MDSC) are a major component of the immune suppressive network described in cancer and many other pathological conditions. Recent studies have demonstrated that one of the major mechanisms of MDSC-induced immune suppression is mediated by reactive oxygen species (ROS). However, the mechanism of this phenomenon remained unknown. In this study, we observed a substantial up-regulation of ROS by MDSC in all of seven different tumor models and in patients with head and neck cancer. The increased ROS production by MDSC is mediated by up-regulated activity of NADPH oxidase (NOX2). MDSC from tumor-bearing mice had significantly higher expression of NOX2 subunits, primarily p47(phox) and gp91(phox), compared with immature myeloid cells from tumor-free mice. Expression of NOX2 subunits in MDSC was controlled by the STAT3 transcription factor. In the absence of NOX2 activity, MDSC lost the ability to suppress T cell responses and quickly differentiated into mature macrophages and dendritic cells. These findings expand our fundamental understanding of the biology of MDSC and may also open new opportunities for therapeutic regulation of these cells in cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833019PMC
http://dx.doi.org/10.4049/jimmunol.0900092DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
myeloid-derived suppressor
8
suppressor cells
8
expression nox2
8
nox2 subunits
8
mdsc
7
cells
5
mechanism regulating
4
regulating reactive
4

Similar Publications

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Cu-Ni Oxidation Mechanism Unveiled: A Machine Learning-Accelerated First-Principles and TEM Study.

Nano Lett

January 2025

Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).

View Article and Find Full Text PDF

Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!