H chain cDNA libraries were constructed from the RNA derived from seven different organs and tissues from the same individual catfish. Sequence analysis of >300 randomly selected clones identified clonal set members within the same or different tissues, and some of these represented mosaic or hybrid sequences. These hybrids expressed V(H) members of the same or different V(H) families within different regions of the same clone. Within some clonal sets multiple hybrids were identified, and some of these represented the products of sequential V(H) replacement events. Different experimental methods confirmed that hybrid clones identified in the cDNA library from one tissue could be reisolated in the cDNA pool or from the total RNA derived from the same or a different tissue, indicating that these hybrids likely represented the products of in vivo receptor revision events. Murine statistical recombination models were used to evaluate cryptic recombination signal sequences (cRSS), and significant cRSS pairs in the predicted V(H) donor and recipient were identified. These models supported the hypothesis that seamless revisions may have occurred via hybrid joint formation. The heptamers of the cRSS pairs were located at different locations within the coding region, and different events resulted in the replacement of one or both CDR as well as events that replaced the upstream untranslated region and the leader region. These studies provide phylogenetic evidence that receptor revision may occur in clonally expanded B cell lineages, which supports the hypothesis that additional levels of somatic H chain diversification may exist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711631PMC
http://dx.doi.org/10.4049/jimmunol.0801013DOI Listing

Publication Analysis

Top Keywords

receptor revision
12
rna derived
8
clones identified
8
represented products
8
crss pairs
8
patterns receptor
4
revision immunoglobulin
4
immunoglobulin heavy
4
heavy chains
4
chains teleost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!