NADPH oxidase (Nox)-dependent reactive oxygen species production is implicated in the pathogenesis of cardiovascular diseases, including hypertension. We tested the hypothesis that oxidase subunits are differentially regulated in renal proximal tubules from normotensive and spontaneously hypertensive rats. Basal Nox2 and Nox4, but not Rac1, in immortalized renal proximal tubule cells and brush border membranes were greater in hypertensive than in normotensive rats. However, more Rac1 was expressed in lipid rafts in cells from hypertensive rats than in cells from normotensive rats; the converse was observed with Nox4, whereas Nox2 expression was similar. The D(1)-like receptor agonist fenoldopam decreased Nox2 and Rac1 protein in lipid rafts to a greater extent in hypertensive than in normotensive rats. Basal oxidase activity was 3-fold higher in hypertensive than in normotensive rats but was inhibited to a greater extent by fenoldopam in normotensive (58+/-3.3%) than in hypertensive rats (31+/-5.2%; P<0.05; n=6 per group). Fenoldopam decreased the amount of Nox2 that coimmunoprecipitated with p67(phox) in cells from normotensive rats. D(1)-like receptors may decrease oxidase activity by disrupting the distribution and assembly of oxidase subunits in cell membrane microdomains. The cholesterol-depleting reagent methyl-beta-cyclodextrin decreased oxidase activity and cholesterol content to a greater extent in hypertensive than in normotensive rats. The greater basal levels of Nox2 and Nox4 in cell membranes and Nox2 and Rac1 in lipid rafts in hypertensive rats than in normotensive rats may explain the increased basal oxidase activity in hypertensive rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879618PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.120642DOI Listing

Publication Analysis

Top Keywords

normotensive rats
16
renal proximal
12
hypertensive rats
12
hypertensive normotensive
12
nadph oxidase
8
oxidase activity
8
proximal tubule
8
tubule cells
8
rats basal
8
lipid rafts
8

Similar Publications

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Changes in the intestinal microbiota induced by the postnatal environment and their association with hypertension.

Pharmacol Res

January 2025

Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil. Electronic address:

It has been established that cross-fostering impacts the development of hypertension in spontaneously hypertensive rats (SHR). However, the ability of the cross-fostering protocol to shape gut microbiota profile in SHR and impact hypertension is not known. In this sense, the current study explored the influence of normotensive and hypertensive postnatal environments on the intestinal microbiota structure, composition, and functional capacity of SHR and Wistar rats.

View Article and Find Full Text PDF

Futile recanalization hampers prognoses for ischemic stroke patients despite successful recanalization therapy. Allegedly, hypertension and reperfusion deficits contribute, but a better understanding is needed of how they interact and mediate disease outcome. We reassessed data from spontaneously hypertensive and normotensive Wistar-Kyoto rats (male, n = 6-7/group) that were subjected to two-hour embolic middle cerebral artery occlusion and thrombolysis in preclinical trials.

View Article and Find Full Text PDF

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!