Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2009.03.028 | DOI Listing |
Alzheimers Dement
December 2024
University of Oxford, Oxford, United Kingdom.
Background: Alzheimer's (AD) and Parkinson's disease (PD) feature progressive neurodegeneration in a remarkably regionally selective manner. Post mortem studies have posited a role for cell autonomous mechanisms driving this, so we aimed to examine a live human induced pluripotent stem cell (iPSC) model to see whether it can replicate the phenomenon of selective neuronal vulnerability, so to better determine disease mechanisms and therapeutic targets.
Method: iPSC-derived neurons offer a rare opportunity to examine cell autonomous vulnerability in live human cells.
Alzheimers Dement
December 2024
Purdue University, West Lafayette, IN, USA.
Background: Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods and even in adult stage can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between Pb exposure and Alzheimer's Disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking Pb exposure and increased AD risk, however, remains elusive.
View Article and Find Full Text PDFEnviron Int
December 2024
Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
Chemically induced neurotoxicity is a critical aspect of chemical safety assessment. Traditional and costly experimental methods call for the development of high-throughput virtual screening. However, the small datasets of neurotoxicity have limited the application of advanced deep learning techniques.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2024
Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas; Department of Psychology, University of Nevada, Las Vegas.
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!