The mechanical properties of fingernails are important because of their impact in preventing damage and in maintaining their appearance. In particular, knowing the effect of local environmental conditions can tell us how they might best be protected. In order to better understand this, tensile tests were carried out to characterise the properties of fingernails at different relative humidities. Cyclic tests were also conducted to investigate the ability of the structure to recover deformation at different moisture contents. Torsional tests were performed to determine the shear modulus of the keratinous matrix material which binds together the fibrous components of the fingernails. This enabled an analysis of how the material may resist bending, torsion and permanent deformation in a natural environment. In particular, it is shown that at low relative humidity the nails are more brittle, and at high moisture contents they are more flexible. Increasing relative humidity lowers torsional stiffness much more than tensile stiffness, suggesting that moisture plasticises the matrix rather than affecting the fibres. The twist to bend ratio is minimised at 55% RH, close to the natural condition of nails which should minimise susceptibility to torsional damage due to plasticisation and a disruption of the matrix material binding the keratin fibres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2009.03.020 | DOI Listing |
Sci Rep
January 2025
Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.
View Article and Find Full Text PDFBackground: Kirschner wire (K-wire) and intramedullary (IM) screw fixation are accepted techniques for treatment of unstable proximal phalanx fractures, but comparative reports are lacking. This study aimed to evaluate early clinical outcomes following treatment with K-wire or IM fixation.
Methods: A retrospective review of all proximal phalanx fractures treated surgically at a single center by multiple surgeons was performed from May 1, 2019 to March 1, 2024.
Purpose Of The Study: Intraarticular fractures of the distal femur rank among the most severe musculoskeletal injuries. Various treatment options, such as plate osteosynthesis or retrograde nailing, can be employed. This study aims to evaluate the clinical outcomes and complications of intraarticular distal femoral fractures treated with retrograde femoral nail, with particular emphasis on C3 fractures.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China.
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!