Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular, and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and colocalized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.2 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778597 | PMC |
http://dx.doi.org/10.1016/j.jmb.2009.04.024 | DOI Listing |
Talanta
January 2025
Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India. Electronic address:
The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD.
View Article and Find Full Text PDFTheranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFLoading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.
View Article and Find Full Text PDFChem Asian J
January 2025
Qingdao University of Science and Technology, College of Polymer Science and Engineering, 53 ZHENGZHOU ROAD, 266000, Qingdao, CHINA.
Constructing highly conjugated three-dimensional covalent organic frameworks (3D COFs), particularly those with luminescent features, remains a significant challenge. In this work, we successfully synthesized a 3D COF, named 3D-Py-SP-COF, using a rigid and orthogonal spirobifluorene building block for the spatial 3D structure construction and planar pyrene as luminescent units. The incorporation of the pyrene and the unique rigid 3D network structure endow 3D-Py-SP-COF with fluorescent properties.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.
A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!