This study was aimed to investigate the effects of gambogic acid on the cells of high-risk patients with myelodysplastic syndrome (MDS) in vitro and its mechanism. The inhibition effect of gambogic acid on growth of MUTZ-1 cell line of MDS-RAEB was detected by MTT method. Apoptosis and cell cycle were detected by morphological observation and flow cytometry respectively. The expressions of bax/bcl-2 gene at mRNA level were detected by RT-PCR. The results indicated that the Gambogic acid inhibited the growth of MUTZ-1 cells, the inhibitory rate of gambogic acid with the range of 0.2 - 0.8 microg/ml was enhanced along with increasing of drug concentration. Flow cytometric assay showed that the apoptotic rate of MUTZ-1 cells treated by gambogic acid also was enhanced along with increasing of drug concentration, the apoptotic rates resulting from gambogic acid (0, 0.4, 0.6, 0.8 microg/ml) were (5 +/- 0.5)%, (13 +/- 0.5)%, (37 +/- 0.7)% and (56 +/- 0.6)% respectively. The characteristic changes of apoptosis emerged in MUTZ-1 cells after being exposed to gambogic acid. Gambogic acid could significantly down-regulate the expressions of bcl-2 gene in a dose dependent manner, however, it had no effects on bax gene. It is concluded that within the range of concentration from 0.4 to 0. 8 microg/ml, gambogic acid can inhibit the growth of MUTZ-1 cells by inducing their apoptosis and down-regulating the expression of bcl-2 gene, which may be one of the main mechanisms underlying its antitumor effects.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gambogic acid
40
mutz-1 cells
16
growth mutz-1
12
acid
10
gambogic
9
mutz-1 cell
8
enhanced increasing
8
increasing drug
8
drug concentration
8
+/- 05%
8

Similar Publications

Evaluation of active substances in gamboge and their mechanisms for the treatment of colorectal cancer by UPLC-MS/MS integrated with network pharmacology.

Anal Biochem

March 2025

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China. Electronic address:

Gamboge exhibits anti-colorectal cancer (CRC) activity, however, its active compounds and the underlying mechanisms remain unclear. Herein, a liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for determining gambogellic acid, β-morellic acid, isogambogenic acid, gambogenic acid, R-gambogic acid, S-gambogic acid, and hydroxygambogic acid in gamboge was established. The key parameters including ion transitions, voltages, LOD, and LOQ were determined, with LOD ranging from 0.

View Article and Find Full Text PDF

Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells.

Biochem Pharmacol

December 2024

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China. Electronic address:

Article Synopsis
  • Gambogic acid (GA), derived from Garcinia hanburyi, shows potential anticancer effects in ovarian cancer (OC) by inducing a form of programmed cell death known as pyroptosis.
  • GA treatment leads to reduced cell viability and specific morphological changes in OC cells, such as cell swelling and impaired membrane integrity, associated with pyroptosis.
  • The study highlights that GA activates the ROS/p53/mitochondria signaling pathway, resulting in increased levels of cleaved caspase-3 and GSDME-N, making GA a promising therapeutic option for OC.
View Article and Find Full Text PDF

pH-responsive hydrogel with gambogic acid and calcium nanowires for promoting mitochondrial apoptosis in osteosarcoma.

J Control Release

January 2025

Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China. Electronic address:

Calcium (Ca) overload therapy gained significant attention in oncology. However, its therapeutic efficacy remained limited due to insufficient Ca accumulation at the tumor site and suboptimal intracellular Ca influx. In this study, gambogic acid (GA), a natural phenolic compound known to promote Ca influx, was encapsulated within an enzyme-triggered, pH-responsive hydrogel (GM@Lip@CHP-Gel) containing Ca hydrogen phosphate nanowires (CHP) to achieve a synergistic approach for bone tumor therapy.

View Article and Find Full Text PDF

Chemoresistance encountered using conventional chemotherapy demands novel treatment approaches. Asplatin (Asp), a novel platinum (IV) prodrug designed to release cisplatin and aspirin in a reductive environment, has demonstrated high cytotoxicity at reduced drug resistance. Herein, we investigated the ability of green-synthesized nanocarriers to enhance Asp's efficacy.

View Article and Find Full Text PDF

The development of an effective treatment for myelodysplastic syndrome (MDS) is needed due to the insufficient efficacy of current therapies. Gambogenic acid (GNA) is a xanthone constituent of gamboge, a resin secreted by Hook. f.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!