Background: Estrogens, environmental chemicals with carcinogenic potential, as well as oxidative and carbonyl stresses play a very important role in breast cancer (BC) genesis and progression. Therefore, polymorphisms of genes encoding enzymes involved in estrogen biosynthesis pathway and in the metabolic activation of pro-carcinogens to genotoxic intermediates, such as cytochrome P450C17alpha (CYP17), endogenous free-radical scavenging systems, such as glutathione S-transferase (GSTP1) and paraoxonase 1 (PON1), and anti-glycation defenses, such as glyoxalase I (GLO1), could influence individual susceptibility to BC. In the present case-control study, we investigated the possible association of CYP17 A1A2, GSTP1 ILE105VAL, PON1 Q192R or L55M, and GLO1 A111E polymorphisms with the risk of BC.
Methods: The above-said five polymorphisms were characterized in 547 patients with BC and in 544 healthy controls by PCR/RFLP methods, using DNA from whole blood. To estimate the relative risks, Odds ratios and 95% confidence intervals were calculated using unconditional logistic regression after adjusting for the known risk factors for BC.
Results: CYP17 polymorphism had no major effect in BC proneness in the overall population. However, it modified the risk of BC for certain subgroups of patients. In particular, among premenopausal women with the A1A1 genotype, a protective effect of later age at menarche and parity was observed. As to GSTP1 and PON1 192 polymorphisms, the mutant Val and R alleles, respectively, were associated with a decreased risk of developing BC, while polymorphisms in PON1 55 and GLO1 were associated with an increased risk of this neoplasia. However, these findings, while nominally significant, did not withstand correction for multiple testing.
Conclusion: Genetic polymorphisms in biotransformation enzymes CYP17, GSTP1, PON1 and GLO1 could be associated with the risk for BC. Although significances did not withstand correction for multiple testing, the results of our exploratory analysis warrant further studies on the above mentioned genes and BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680904 | PMC |
http://dx.doi.org/10.1186/1471-2407-9-115 | DOI Listing |
Vavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia.
Myocardial infarction (MI) is a multifactorial polygenic disease that develops as a result of a complex interaction of numerous genetic factors and the external environment. Accordingly, the contribution of each of them separately is usually not large and may significantly depend on the state of other accompanying factors. The purpose of the study was to search for informative predictors of MI risk based on polygenic analysis of polymorphic variants of (1) the antioxidant defense enzyme genes PON1 (rs662), PON2 (rs7493), CAT (rs1001179), MSRA (rs10098474) and GSTP1 (rs1695); (2) the apoptosis genes CASP8 (rs3834129), TP53 (rs1042522) and BCL2 (rs12454712); and (3) the inflammation genes CRP (rs1205), CX3CR1 (rs3732378), IL6 (rs1800795) and CCL2 (rs1024611).
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Medical Laboratory Sciences-IUG, Gaza, Palestine.
Semen possesses a variety of antioxidant defense mechanisms which protect sperm DNA from the damaging effects of oxidative stress. Correlation between antioxidant genes variants and sperm DNA fragmentation (SDF) level is not sufficiently studied. Therefore, we investigated the association between several single nucleotide polymorphisms (SNPs): CYP1A1 (rs1048943A > G), CYP4F2 (rs2108622G > A), NRF2 (rs6721961C > A), PON1 (rs662A > G), NOS3 (rs1799983G > T), GSTM1 (null), CAT (rs1001179C > T), SOD2 (rs4880A > G), GSTP1 (rs1695A > G), PON2 (rs7493G > C), EPHX2 (rs1042064T > C), and AHR (rs2066853G > A) and elevated SDF.
View Article and Find Full Text PDFEnviron Sci Technol
October 2023
Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, 40530 Gothenburg, Sweden.
We explored the influence of child and maternal single nucleotide polymorphisms (SNPs) in genes related to neurological function and arsenic metabolism (i.e., , , , , , , , and as well as ) on the association between prenatal arsenic (As) exposure and methylation efficiency and neuropsychological development in 4-5-year-old children.
View Article and Find Full Text PDFSci Total Environ
November 2023
GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain.
Cancers (Basel)
January 2023
Human Genetic Variability Group, Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid-Getafe University Hospital-Universidad Europea de Madrid), 28046 Madrid, Spain.
The addition to chemotherapy of anti-HER2 drugs such as trastuzumab or pertuzumab has improved outcomes in HER2-positive breast cancer patients. However, resistance to these drugs in some patients remains a major concern. This study examines the possible association between the response to neoadjuvant anti-HER2 treatment in breast cancer patients and the presence of 28 SNPs in 17 genes involved in different cell processes (, , , , , , , , , , chr6 intergenic region, , , , , , and ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!