We use ab initio steered molecular dynamics to investigate the mechanically induced ring opening of cyclobutene. We show that the dynamical results can be considered in terms of a force-modified potential energy surface (FMPES). We show how the minimal energy paths for the two possible competing conrotatory and disrotatory ring-opening reactions are affected by external force. We also locate minimal energy pathways in the presence of applied external force and show that the reactant, product, and transition state geometries are altered by the application of external force. The largest effects are on the transition state geometries and barrier heights. Our results provide a framework for future investigations of the role of external force on chemical reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja8095834DOI Listing

Publication Analysis

Top Keywords

external force
16
energy pathways
8
ring opening
8
opening cyclobutene
8
minimal energy
8
transition state
8
state geometries
8
principles dynamics
4
dynamics minimum
4
energy
4

Similar Publications

Intelligent vehicle trajectory tracking with an adaptive robust nonsingular fast terminal sliding mode control in complex scenarios.

Sci Rep

December 2024

School of Vehicle and Energy, Yanshan University, 438 West Hebei Avenue, Qinhuangdao, 066004, People's Republic of China.

This study presents a strategy for an intelligent vehicle trajectory tracking system that employs an adaptive robust non-singular fast terminal sliding mode control (ARNFTSMC) approach to address the challenges of uncertain nonlinear dynamics. Initially, a path tracking error system based on mapping error is established, along with a speed tracking error system. Subsequently, a novel ARNFTSMC strategy is introduced to tackle the uncertainties and external perturbations encountered during actual vehicle operation.

View Article and Find Full Text PDF

Shoulder and elbow injuries are prevalent among baseball players, particularly pitchers, who experience repetitive eccentric loading of the shoulder, leading to muscle damage and increased injury risk. Nearly 40% of shoulder injuries in baseball occur in pitchers, with many facing low rates of return to sport. The rotator cuff (RC) muscles-supraspinatus (SSP), infraspinatus (ISP), subscapularis (SSC), and teres minor (TMin)-are crucial for shoulder stability, movement, and force generation, particularly in overhead sports.

View Article and Find Full Text PDF

Controllable Growth of Monolayer and Bilayer WSe by Liquid-Phase Precursor via Chemical Vapor Deposition for Photodetection.

Nanomaterials (Basel)

December 2024

School of Flexible Electronics (Future Technologies), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

Two-dimensional WSe nanosheets have received increasing attention due to their excellent optoelectronic properties. Solid precursors, such as WO and Se powders, have been extensively employed to grow WSe nanosheets by the chemical vapor deposition (CVD) method. However, the high melting point of WO results in heterogeneous nucleation sites and nonuniform growth of the WSe nanosheet.

View Article and Find Full Text PDF

Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.

View Article and Find Full Text PDF

Using an interatomic potential that can capture the tetrahedral configuration of water molecules (HO) in ice without the need to explicitly track the motion of the O and H atoms, coarse-grained (CG) atomistic simulations are performed here to characterize the structures, energy, cohesive strengths, and fracture resistance of the grain boundaries (GBs) in polycrystalline ice resulting from water freezing. Taking the symmetric tilt grain boundaries (STGBs) with a tilting axis of ⟨0001⟩ as an example, several main findings from our simulations are (i) the GB energy, , exhibits a strong dependence on the GB misorientation angle, θ. The classical Read-Shockley model only predicts the - θ relation reasonably well when θ < 20° or θ > 45° but fails when 20° < θ < 45°; (ii) two "valleys" appear in the -θ landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!