Listeriolysin O (LLO) is a thiol-activated toxin secreted by the facultative intracellular pathogen Listeria monocytogenes. LLO is essential for the survival of the bacterium in the infected cell because it promotes lysis of the phagosome membrane and escape of the bacterium into the cytosol. LLO was used as an antigen for the production of nine monoclonal antibodies (MAbs) in mice. Three of these could inhibit the hemolytic activity of LLO. One of them inhibited binding of LLO to erythrocyte membranes. The two other antibodies blocked the activity of LLO at a step subsequent to membrane binding. Only two of the nine MAbs recognized three other purified SH-activated toxins, streptolysin O, alveolysin, and pneumolysin. Western blot (immunoblot) analysis of culture supernatants of Listeria ivanovii and Listeria seeligeri, two hemolytic species of the genus Listeria, revealed that two MAbs recognized ivanolysin and seeligerolysin. The latter was also recognized by two other MAbs, including one of the neutralizing antibodies. MAbs raised against a peptide, ECTG LAWEWWR, present in all thiol-activated toxins sequenced to date, recognized all toxins and were not neutralizing. Taken together, these results demonstrate the existence of regions important for hemolytic activity that are unique to hemolysins of the genus Listeria and show that regions outside the conserved peptide are important for activity of LLO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC259090 | PMC |
http://dx.doi.org/10.1128/iai.59.12.4641-4646.1991 | DOI Listing |
Biochemistry
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India.
Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Advanced Battery Materials and Devices, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
Elemental doping is widely used to improve the performance of cathode materials in lithium-ion batteries. However, macroscopic/statistical investigation on how doping sites are distributed in the material lattice, despite being a key prerequisite for understanding and manipulating the doping effect, has not been effectively established. Herein, to solve this predicament, a universal strategy is proposed to quantitatively identify the locations of Al and Mg dopants in lithium-rich layered oxides (LLOs).
View Article and Find Full Text PDFRSC Adv
October 2024
China Automotive Battery Research Institute Co., Ltd No.11 Xingke Dong Street, Huairou District Beijing 101407 China
Li-rich layered oxide (LLO) is regarded as one of the most promising candidates for the next-generation batteries. At present, most of the research studies are focusing on the normal electrochemical properties of LLOs, while safety issues of the cells are neglected. To address this problem, this article systematically investigates the thermal runaway (TR) process of the pouch cell based on LLOs and elucidates how different activation degrees influence the thermal stability of the cathode material and cell, through various thermal analysis methods.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430030, China.
Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO).
View Article and Find Full Text PDFJ Rehabil Assist Technol Eng
July 2024
Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA.
Introduction: Lower limb orthoses (LLOs) and assistive devices (ADs) can be used together or separately to improve mobility when performing daily activities. The goal of this study was to examine utilization of LLOs and ADs in a national sample of adult LLO users.
Methods: A survey was designed to ask participants whether they typically use their LLOs and/or ADs to perform 20 daily activities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!