Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sequence-specific protein/DNA contacts direct most transcription factors to binding sites within the promoters of genes they regulate. Several chemical probes, such as dimethyl sulfate, have been used to obtain information on these sites of interaction. Protection and interference patterns frequently correspond to highly conserved positions within binding sites and are often specific for a given transcription factor or family of factors. The methods described here can be used to identify sites within a DNA sequence that are bound by nuclear factors or to characterise the contacts made by a purified factor or recombinant protein in vitro. As methylation protection is the in vitro equivalent of in vivo genomic footprinting, a direct comparison between in vivo and in vitro footprints can be made.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60327-015-1_8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!