Proteolysis is one of the most important post-translational modifications of the proteome with every protein undergoing proteolysis during its synthesis and maturation and then upon inactivation and degradation. Extracellular proteolysis can either activate or inactivate bioactive molecules regulating physiological and pathological processes. Therefore, it is important to develop non-biased high-content screens capable of identifying the substrates for a specific protease. This characterization can also be useful for identifying the nodes of intersection between a protease and cellular pathways and so aid in the detection of drug targets. Classically, biochemical methods for protease substrate screening only discover what can be cleaved but this is often not what is actually cleaved in vivo. We suggest that biologically relevant protease substrates can be best found by analysis of proteolysis in a living cellular context, starting with a proteome that has never been exposed to the activity of the examined protease. Therefore, protease knockout cells form a convenient and powerful system for these screens. We describe a method for identification and quantification of shed and secreted cleaved substrates in cell cultures utilizing the cell metabolism as a labelling system. SILAC (stable isotope labelling by amino acids) utilises metabolic incorporation of stable isotope-labelled amino acids into living cells. As a model system to develop this approach, we chose the well-characterised matrix metalloproteinase, MMP-2, because of its importance in tumour metastasis and a large database of MMP substrates with which to benchmark this new approach. However, the concepts can be applied to any extracellular or cell membrane protease. Generating differential metabolically labelled proteomes is one key to the approach; the other is the use of a negative peptide selection procedure to select for cleaved N-termini in the N-terminome. Using proteomes exposed or not to a particular protease enables biologically relevant substrates and their cleavage sites to be identified and quantified by tandem mass spectrometry proteomics and database searching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60327-003-8_8 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches-transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites-that reveal distinct rules governing the specificity among B.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Detection and imaging of dual miRNAs based on AND logic gates can improve the accuracy of the early diagnosis of disease. However, a single target may lead to false positive. Hence, this work rationally integrates hyperbranched rolling circle amplification (HRCA) with Cas12a by replacing the PAM sequence with a bubble to sensitively detect and image miRNA-10b and miRNA-21 based on the AND logic gate.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
The enantioselective ring-opening reactions of methylenecyclopropanes (MCPs) involving C-C bond activation via oxidative addition of transition metals have been rarely reported. Here, we disclose a Pd/Cu-catalyzed enantio- and regioselective coupling between cyclic imino esters and MCPs to produce α-allylated 2-pyrrole derivatives. In this reaction, azomethine ylide formed by a chiral copper catalyst with ketimine ester would serve as a nucleophile to react with activated MCPs via palladium catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!