Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-009-2782-0DOI Listing

Publication Analysis

Top Keywords

human dna
16
reference material
12
dna quantitation
12
quantitation standard
12
nist standard
8
standard reference
8
2372 human
8
dna
8
dna extracts
8
well-characterized stable
8

Similar Publications

The secrets of the Tübingen Castle kitchen: Friedrich Miescher and the discovery of nuclein, the cornerstone of DNA.

Gac Med Mex

January 2025

Departamento de Anatomía Patológica, Fundación Clínica Médica Sur; Departamento de Biología Celular y Tisular, Escuela de Medicina, Universidad Panamericana. Mexico City, Mexico.

In 1869, Friedrich Miescher, born in Basel, Switzerland, discovered a previously unknown phosphorus-rich substance in the nuclei of pus cells. Conducting his research in a laboratory set up in the kitchen of Tübingen's medieval castle in Germany, and under the guidance by Professor Felix Hoppe-Seyler, Miescher primarily focused on the composition of cell nuclei. He obtained nuclear material by washing pus cells from surgical bandages provided by a nearby hospital.

View Article and Find Full Text PDF

Analysis of circulating cell-free nuclear and mitochondrial DNA in plasma of Mexican patients with breast cancer.

Gac Med Mex

January 2025

División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara.

Background: The usefulness of circulating free DNA (cfDNA), nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) as potential biomarkers in cancer remains controversial.

Objective: To determine the concentration of cfDNA and plasma nDNA and mtDNA levels in breast cancer (BC) patients.

Material And Methods: This study included a total of 86 women (69 patients with BC and 17 women as a control group).

View Article and Find Full Text PDF

Introduction: Alkhumra hemorrhagic fever virus (AHFV) is a newly discovered virus in the Flaviviridae family. It was discovered in 1995 among animal handlers in Saudi Arabia. AHFV spreads through close contact with infected animals and tick bites.

View Article and Find Full Text PDF

Methylation status of selected genes in non-small cell lung carcinoma - current knowledge and future perspectives.

Neoplasma

December 2024

Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.

DNA methylation is recognized as an early event in cancer initiation and progression. This review aimed to compare the methylation status of promoter regions in selected genes across different histological subtypes of non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and the rare but highly aggressive large-cell neuroendocrine carcinoma (LCNEC). A comprehensive literature search was conducted in the PubMed database until August 17, 2024, using standardized keywords to identify reports on promoter methylation in NSCLC.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!