Purpose: To investigate the effects of topical application of an Aloe vera gel combined or not with microcurrent application on the healing of skin wounds surgically induced in Wistar rats.

Methods: The animals were randomly divided into the following groups: control group, animals topically treated with Aloe vera, animals treated with a microcurrent, and animals receiving topical application of Aloe vera combined with microcurrent application.

Results: The results indicated differences in wound healing between the various treatments when compared to the control group. Tissue hyperplasia was lower in the control group compared to the other treated groups. Accelerated wound healing was observed in the group treated with Aloe vera compared to control. Animals submitted to microcurrent application only and the group treated with microcurrent plus Aloe vera presented an earlier onset of the proliferative phase compared to the control group and animals treated with Aloe vera gel alone. Morphometric data confirmed the structural findings.

Conclusion: Simultaneous application of Aloe vera gel and microcurrent is an excellent choice for the treatment of open wounds thus indicating a synergistic action of these two applications.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0102-86502009000200013DOI Listing

Publication Analysis

Top Keywords

aloe vera
32
application aloe
16
control group
16
vera gel
12
treated aloe
12
compared control
12
aloe
8
vera
8
wounds surgically
8
surgically induced
8

Similar Publications

Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes.

Macromol Biosci

January 2025

Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

To address the rising prevalence of bacterial infections and the need for innovative therapeutic solutions, this study has developed a novel antibacterial hydrogel composite composed of Aloe vera, gelatin, sodium alginate, and Sterculia monosperma-silver nanoparticles (SM-AgNPs) loaded curcumin-nanoliposomes (NLPs). The aloe vera/gelatin/sodium alginate hydrogels (AGS) are prepared using different weight ratios of Aloe vera, gelatin, and sodium alginate, aiming to optimize mechanical properties and biocompatibility for biomedical applications. The incorporation of SM-AgNPs and curcumin-loaded NLPs enhanced the hydrogels' antibacterial properties.

View Article and Find Full Text PDF

Background: The efficacy of surgical interventions relies on appropriate closure of the surgical site, which should also be devoid of bacteria. Plaque accumulation is a constant challenge that hampers the healing outcome. Sutures used to close the wound serve as reservoirs for microbes, increasing the risk of surgical site infections (SSIs).

View Article and Find Full Text PDF

This work investigated the production and characterization of a silk fibroin (SF) hydrogel incorporated with an (AV) extract. Four extraction methods, ultrasound-assisted extraction with bath and probe, stirring, and Soxhlet, were tested, while the hydrogel was produced by a one-step freeze-thaw method. Besides the extraction yield, the antioxidant capacity of the extracts was accessed, which allowed to select the extract obtained by ultrasound-assisted extraction to be incorporated into the hydrogels.

View Article and Find Full Text PDF

Background: Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.

Objective: The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.

View Article and Find Full Text PDF

(1) Background and aim: Aloe arborescens Mill. (A. arborescens) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!