A facile method for effective doping of Tb3+ into ZnO nanocrystals.

Chem Commun (Camb)

Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.

Published: May 2009

A technical challenging issue in rare-earth ion doping in ZnO nanocrystals has been tackled in this communication by a novel isocrystalline core-shell protocol, and the fabricated ZnO:Tb(3+)/ZnO core/shell nanocrystals showed efficient doping and excellent optical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b902282aDOI Listing

Publication Analysis

Top Keywords

zno nanocrystals
8
facile method
4
method effective
4
effective doping
4
doping tb3+
4
tb3+ zno
4
nanocrystals technical
4
technical challenging
4
challenging issue
4
issue rare-earth
4

Similar Publications

The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract.

View Article and Find Full Text PDF

Anti-diabetic and anti-microbial activity of aspalathus linearis and syzygium aromaticum formulation mediated zinc oxide nanoparticles.

Med J Malaysia

January 2025

Nanobiomedicine lab, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.

Introduction: Zinc oxide nanoparticles (ZnO NPs) exhibit a wide range of biomedical applications majorly used as antiinflammatory, anti-cancer, anti-diabetic, and anti-microbial activity and other biomedical applications because they show less toxicity and are very compatible. Zinc metal is an inorganic and essential element in the human body at the trace level. ZnO NPs are also GRAS substances (Generally Recognized As Safe).

View Article and Find Full Text PDF

Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method.

View Article and Find Full Text PDF

Inkjet-Printed Graphene-PEDOT:PSS Decorated with Sparked ZnO Nanoparticles for Application in Acetone Detection at Room Temperature.

Polymers (Basel)

December 2024

Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.

This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!