Terminally differentiated cells have a reduced capacity to repair double-stranded breaks, but the molecular mechanism behind this downregulation is unclear. Here we find that miR-24 is upregulated during postmitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a protein that has a key role in the double-stranded break response. We show that the H2AX 3' untranslated region contains conserved miR-24 binding sites that are indeed regulated by miR-24. During terminal differentiation, both H2AX mRNA and protein levels are substantially reduced by miR-24 upregulation in in vitro differentiated cells; similar diminished levels are found in primary human blood cells. miR-24-mediated suppression of H2AX renders cells hypersensitive to gamma-irradiation and genotoxic drugs, a phenotype that is fully rescued by overexpression of miR-24-insensitive H2AX. Therefore, miR-24 upregulation in postreplicative cells reduces H2AX and makes them vulnerable to DNA damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853019 | PMC |
http://dx.doi.org/10.1038/nsmb.1589 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!