Post-translational modifications of NF-kappaB through phosphorylations enhance its transactivation potential. Much is known about the kinases that phosphorylate NF-kappaB, but little is known about the phosphatases that dephosphorylate it. By using a genome-scale siRNA screen, we identified the WIP1 phosphatase as a negative regulator of NF-kappaB signalling. WIP1-mediated regulation of NF-kappaB occurs in both a p38-dependent and independent manner. Overexpression of WIP1 resulted in decreased NF-kappaB activation in a dose-dependent manner, whereas WIP1 knockdown resulted in increased NF-kappaB function. We show that WIP1 is a direct phosphatase of Ser 536 of the p65 subunit of NF-kappaB. Phosphorylation of Ser 536 is known to be essential for the transactivation function of p65, as it is required for recruitment of the transcriptional co-activator p300. WIP1-mediated regulation of p65 regulated binding of NF-kappaB to p300 and hence chromatin remodelling. Consistent with our results, mice lacking WIP1 showed enhanced inflammation. These results provide the first genetic proof that a phosphatase directly regulates NF-kappaB signalling in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb1873DOI Listing

Publication Analysis

Top Keywords

nf-kappab signalling
12
nf-kappab
10
wip1 phosphatase
8
phosphatase negative
8
negative regulator
8
regulator nf-kappab
8
wip1-mediated regulation
8
ser 536
8
wip1
6
signalling post-translational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!