As multicellular organisms, plants, like animals, use endogenous signaling molecules to coordinate their own physiology and development. To compensate for the absence of a cardiovascular system, plants have evolved specialized transport pathways to distribute signals and nutrients. The main transport streams include the xylem flow of the nutrients from the root to the shoot and the phloem flow of materials from the photosynthetic active tissues. These long-distance transport processes are complemented by several intercellular transport mechanisms (apoplastic, symplastic and transcellular transport). A prominent example of transcellular flow is transport of the phytohormone auxin within tissues. The process is mediated by influx and efflux carriers, whose polar localization in the plasma membrane determines the directionality of the flow. This polar auxin transport generates auxin maxima and gradients within tissues that are instrumental in the diverse regulation of various plant developmental processes, including embryogenesis, organogenesis, vascular tissue formation and tropisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchembio.170 | DOI Listing |
ACS Nano
January 2025
Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.
Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.
Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
Ice core measurements reveal dipole-like snow accumulation trends over West Antarctica throughout the 20th century, with an increase of >2000 billion metric tons over the Antarctic Peninsula and Ellsworth Land but a decrease of ~500 billion metric tons over Marie Byrd Land. Although atmospheric teleconnections were frequently revealed, linking variability between tropics and higher latitudes on interannual and decadal timescales, centennial-scale teleconnection is absent from literature. Here, using statistical analysis and numerical experiments, we reveal that changes of tropical oceans throughout the 20th century drive the long-term Antarctic snowfall trend.
View Article and Find Full Text PDFJ Trauma Nurs
January 2025
Department of Surgery, Morristown Medical Center, Morristown, New Jersey.
Background: Motorcycle and equestrian accidents can share similar trauma mechanisms and can result in serious injuries.
Objective: This study aims to analyze variations in injuries and safety standards through types, severity, and outcomes of traumatic injuries in both motorcycle and equestrian riders.
Methods: Using the 2020 ACS TQIP database, we split patients into two groups based on their primary injury.
Proc Natl Acad Sci U S A
February 2025
Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena 07740, Germany.
In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!