Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO(2) or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO(2) in the medium to support growth. These proteins were not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five- to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions differentially affect the ability of the CbbRRS two-component system to influence cbb transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698475 | PMC |
http://dx.doi.org/10.1128/JB.01795-08 | DOI Listing |
Plant Commun
December 2024
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. Electronic address:
Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for converting atmospheric CO into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, along with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments, known as carboxysomes. The polyhedral carboxysome shell ensures a dense packaging of Rubisco and creates a high-CO internal environment to facilitate the fixation of CO.
View Article and Find Full Text PDFFoods
November 2024
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia.
This study aimed to assess pumpkin leaves as a protein source and determine the feasibility of these proteins to form complexes with alginate for the encapsulation of folic acid. Different isolation protocols, two based on isoelectric precipitation (one with thermal pretreatment and the other with alkali pre-extraction) and one based on stepwise precipitation with ammonium sulfate, were compared regarding the yield and structural properties of the obtained leaf protein concentrates (LPC). The highest purity of protein was achieved using the thermal-acid protocol and the salting-out protocol at 40% saturation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Earth System Science, Stanford University, Stanford, CA 94305.
Cyanobacteria are highly abundant in the marine photic zone and primary drivers of the conversion of inorganic carbon into biomass. To date, all studied cyanobacterial lineages encode carbon fixation machinery relying upon form I Rubiscos within a CO-concentrating carboxysome. Here, we report that the uncultivated anoxic marine zone (AMZ) IB lineage of from pelagic oxygen-deficient zones (ODZs) harbors both form I and form II Rubiscos, the latter of which are typically noncarboxysomal and possess biochemical properties tuned toward low-oxygen environments.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany.
Protein complexes composed of strictly essential subunits are abundant in nature and often arise through the gradual complexification of ancestral precursor proteins. Essentiality can arise through the accumulation of changes that are tolerated in the complex state but would be deleterious for the standalone complex components. While this theoretical framework to explain how essentiality arises has been proposed long ago, it is unclear which factors cause essentiality to persist over evolutionary timescales.
View Article and Find Full Text PDFSyst Appl Microbiol
November 2024
Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!