Overview of the IBA accelerator-based BNCT system.

Appl Radiat Isot

Ion Beam Applications s.a., Chemin du Cyclotron 3, Louvain-la-Neuve, Belgium.

Published: July 2009

During the last few years, IBA started the development of an accelerator-based BNCT system. The accelerator is a Dynamitron built by RDI in USA and will produce a 20 mA proton beam at 2.8 MeV. Neutrons will be produced by the (7)Li(p,n)(7)Be nuclear reaction using a thin lithium target. The neutron energy spectrum will be tailored using a beam shaping assembly. This overview presents the current status of the system: after a description of every component, some design issues, solutions and experimental tests will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2009.03.099DOI Listing

Publication Analysis

Top Keywords

accelerator-based bnct
8
bnct system
8
overview iba
4
iba accelerator-based
4
system years
4
years iba
4
iba started
4
started development
4
development accelerator-based
4
system accelerator
4

Similar Publications

Background: Boron neutron capture therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction B(n,α)Li, consisting in the exposition of patients to neutron beams after administration of a boron compound with preferential accumulation in cancer cells. The high linear energy transfer products of the ensuing reaction deposit their energy at the cell level, sparing normal tissue. Although progress in accelerator-based BNCT has led to renewed interest in this cancer treatment modality, in vivo dose monitoring during treatment still remains not feasible and several approaches are under investigation.

View Article and Find Full Text PDF

. This study aims to determine the optimal structure of the Beam Shaping Assembly (BSA) for an accelerator-based boron neutron capture therapy (BNCT) facility. The aim is to maximize the possible depth of treatment for glioblastoma while ensuring that a treatment time constraint is not exceeded.

View Article and Find Full Text PDF

Current research trends and hotspots of boron neutron capture therapy: a bibliometric and visualization analysis.

Front Oncol

December 2024

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Purpose: This study aimed to describe the trends, current hotspots, and future directions in boron neutron capture therapy (BNCT) through a bibliometric analysis.

Methods: Articles related to BNCT published before 2023-12-31 were retrieved from the Web of Science Core Collection database. VOSviewer, R, and CiteSpace were used for bibliometric analysis and visualization.

View Article and Find Full Text PDF

This study presents a compact accelerator-driven neutron source design with a thermal neutron port and an epithermal neutron port for Boron Neutron Capture Therapy (BNCT), based on 10 mA 2.5 MeV protons bombarding on a 100 μm thick disc-shaped Li target with a diameter of 10 cm. The moderator consists of 2 parts, the epithermal neutron moderator and the thermal neutron moderator.

View Article and Find Full Text PDF

Characterization of acrylic phantom for use in quality assurance of BNCT beam output procedure.

J Radiat Res

January 2025

Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan.

The accelerator-based boron neutron capture therapy (BNCT) system has been approved for specific cases covered by health insurance, and clinical trials for new cases in Japan are currently being conducted on other systems. Owing to the progress of accelerator-based BNCT, the operation of medical physics must be rendered more efficient. A water phantom is used for the quality assurance (QA) of the BNCT beam output procedure; however, a solid phantom is preferred for routine QA because of its ease of use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!