Two novel carboxylphenyl-modified calix[4]arenes, tetrakis-carboxylphenylcalix[4]arene (TCPC) and 1,3-bis-carboxylphenylcalix[4]arene (BCPC), as well as a corresponding analogue for comparison, tetrakis-phenylcalix[4]arene (TPC), have been synthesized by palladium-catalyzed Suzuki cross-coupling of arylboronic acid and tetrabromocalix[4]arene as a key step. The binding properties of these calix[4]arene derivatives with bovine heart cytochrome c (cyt c) in dimethylformamide (DMF) was investigated by fluorescence spectroscopy. The binding affinity in the order of TCPC>BCPC>>TPC reflects a clear dependence on the number of carboxyl ligating groups attached onto a receptor and suggests the electrostatic force may be the predominant factor driving the complexing process. The stable 1:1 complexes of TCPC and BCPC with cyt c were evidenced with the binding constants of 3.15 x 10(6) and 5.85 x 10(5)L mol(-1), respectively. Due to a large overlap between the emission spectrum of TCPC and the absorption spectrum of cyt c, and a short interaction distance (estimated to be 5.6 nm) between them, the fluorescence quenching of TCPC upon complexation with cyt c is attributed to an efficient energy transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2009.03.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!