The small chemical vacuolin-1 induces rapid formation of large vacuoles in various cell types. In epithelial cells, vacuolin-1 has been shown to inhibit Ca2+ ionophore-induced exocytosis depending on experimental conditions used but had no effect on repair of damaged membranes. However, it is not known whether vacuolin-1 could inhibit exocytosis induced by immunoreceptor triggering in professional secretory cells and whether there is any correlation between effect of vacuolin-1 on exocytosis and membrane repair in such cells. Here we show that in rat basophilic leukemia (RBL-2H3) cells activated by the high-affinity IgE receptor (FcepsilonRI) triggering vacuolin-1 enhanced exocytosis. Under identical conditions of activation, vacuolin-1 inhibited exocytosis in mouse bone marrow-derived mast cells (BMMCs). This inhibition was not reflected by decreased phosphorylation of the FcepsilonRI alpha and beta subunits, linker for activation of T cells, non-T cell activation linker, Akt and MAP kinase Erk, and uptake of extracellular Ca2+, indicating that early activation events are not affected. In both cell types vacuolin-1 led to formation of numerous vacuoles, a process which was inhibited by bafilomycin A1, an inhibitor of vacuolar H+-ATPase. Thapsigargin- or Ca2+ ionophore A23187-induced exocytosis also showed different sensitivity to the inhibitory effect of vacuolin-1. Pretreatment of the cells with vacuolin-1 followed by permeabilization with bacterial toxin streptolysin O enhanced Ca2+-dependent repair of plasma membrane lesions in RBL-2H3 cells but inhibited it in BMMCs. Our data indicate that lysosomal exocytosis exhibits different sensitivity to vacuolin-1 depending on the cell type analyzed and mode of activation. Furthermore, our results support the concept that lysosomal exocytosis is involved in the repair of injured plasma membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2009.04.001 | DOI Listing |
Biochem Biophys Rep
July 2024
Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan.
(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux.
View Article and Find Full Text PDFBackground: Many viruses enter host cells by hijacking endosomal trafficking. CapZ, a canonical actin capping protein, participates in endosomal trafficking, yet its precise role in endocytosis and virus infection remains elusive.
Results: Here, we showed that CapZ was transiently associated with early endosomes (EEs) and was subsequently released from the matured EEs after the fusion of two EEs, which was facilitated by PI(3)P to PI(3,5)P2 conversion.
bioRxiv
January 2024
Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
The endocytic pathway is both an essential route of molecular uptake in cells and a potential entry point for pathology-inducing cargo. The cell-to-cell spread of cytotoxic aggregates, such as those of α-synuclein (α-syn) in Parkinson's Disease (PD), exemplifies this duality. Here we used a human iPSC-derived induced neuronal model (iNs) prone to death mediated by aggregation in late endosomes and lysosomes of endogenous α-syn, seeded by internalized pre-formed fibrils of α-syn (PFFs).
View Article and Find Full Text PDFeNeuro
January 2024
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph administration induces transient DAT endocytosis, which, among other Amph effects on dopaminergic neurons, elevates extracellular dopamine.
View Article and Find Full Text PDFJ Biol Chem
November 2023
Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan.
The cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 kDa (TDP-43) has been linked to the progression of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 secreted into the extracellular space has been suggested to contribute to the cell-to-cell spread of the cytoplasmic accumulation of TDP-43 throughout the brain; however, the underlying mechanisms remain unknown. We herein demonstrated that the secretion of TDP-43 was stimulated by the inhibition of the autophagy-lysosomal pathway driven by progranulin (PGRN), a causal protein of frontotemporal lobar degeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!