In mammals, unconjugated bile acids formed in the intestine by bacterial deconjugation are reconjugated (N-acylamidated) with taurine or glycine during hepatocyte transport. Activation of the carboxyl group of bile acids to form acyl-adenylates is a likely key intermediate step in bile acid N-acylamidation. To gain more insight into the process of bile acid adenylate formation, we first synthesized the adenylates of five common, natural bile acids (cholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and lithocholic acid), and confirmed their structure by proton NMR. We then investigated adenylate formation by subcellular fractions of rat liver (microsomes, mitochondria, cytosol) using a newly developed LC method for quantifying adenylate formation. The highest activity was observed in the microsomal fraction. The reaction required Mg(2+) and its optimum pH was about pH 7.0. In term of maximum velocity (V(max)) and the Michaelis constant (K(m)), the catalytic efficiency of the enzyme under the conditions used was highest with cholic acid of the bile acids tested. The formation of cholyl-adenylate was strongly inhibited by lithocholic and deoxycholic acid, as well as by palmitic acid; ibuprofen and valproic acid were weak inhibitors. In cholestatic disease, such adenylate formation might lead to subsequent bile acid conjugation with glutathione or proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2009.04.003DOI Listing

Publication Analysis

Top Keywords

bile acid
16
bile acids
16
adenylate formation
16
acid
9
bile
8
rat liver
8
microsomal fraction
8
formation
6
chemical synthesis
4
synthesis bile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!