Chemokines and their corresponding receptor interactions have been shown to be involved in prostate cancer (PCa) progression and organ-specific metastasis. We have recently shown that PCa cell lines and primary prostate tumors express CXCR5, which correlates with PCa grade. In this study, we present the first evidence that CXCL13, the only ligand for CXCR5, and IL-6 were significantly elevated in PCa patient serum compared to serum from subjects with benign prostatic hyperplasia (BPH), or high-grade prostatic intraepithelial neoplasia (HGPIN) as well as normal healthy donors (NHD). Serum CXCL13 levels significantly (p<0.0001) correlated with serum prostate-specific antigen (PSA), whereas serum IL-6 levels significantly (p<0.0003) correlated with CXCL13 serum levels. CXCL13 was found to be a better predictor of PCa than PSA. CXCL13 was highly expressed by human bone marrow endothelial (HBME) cells and osteoblasts (OBs), but not osteoclasts (OCs), following treatment with physiologically relevant levels of interleukin-6 (IL-6). We further demonstrate that CXCL13, produced by IL-6-treated HBME cells, was able to induce PCa cell invasion in a CXCR5-dependent manner. CXCL13-mediated PCa cell adhesion to HBME cells and alpha(v)beta(3)-integrin clustering was abrogated by CXCR5 blockade. These results demonstrate that the CXCL13-CXCR5 axis is significantly associated with PCa progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600557 | PMC |
http://dx.doi.org/10.1016/j.canlet.2009.03.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!