Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Prolonged hypothermia, as occurs during solid organ transplantation, negatively influences transplantation outcome. Proteolysis is one of the deleterious events implicated in preservation injury of organ allografts. This strongly affects graft quality and hence immediate organ function. Since donor catecholamine treatment improves transplantation outcome after renal transplantation, the present study was conducted to examine the influence of dopamine (DA) pretreatment on hypothermia induced proteolysis in endothelial cells subjected to prolonged cold storage.
Materials And Methods: Lactate dehydrogenase (LDH) assay, two-dimensional electrophoresis, ubiquitination analysis, intracellular calcium measurement, and Western blot analysis were performed on human umbilical vein endothelial cells (HUVEC) subjected to hypothermic preservation or not.
Results: HUVEC were highly susceptible to cold storage, which was reflected by morphological changes, loss of viability, and by significant changes in cellular proteome. DA pretreatment prevented cell death during cold storage. Western blot analysis demonstrated a time dependent up-regulation of calpain 1 and 2 during cold storage, which could be prevented by addition of EDTA. DA pretreatment abolished autoproteolysis of calpain 1. Analysis of ubiquitination revealed a significant increase in ubiquitinated conjugates after cold storage. This was not prevented by DA pretreatment. Neither proteasome nor calpain inhibitors prevented cell death during cold storage.
Conclusion: In endothelial cells subjected to cold preservation, activation of the calpain pathway and the ubiquitin proteasome system occur. Although DA pretreatment inhibits the former, calpain inhibition did not protect endothelial cells during cold storage. DA pretreatment might influence proteolysis, but proteolysis is not the major cause of endothelial cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2008.12.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!