Objective: To reproduce a model of bacterial multiple organ injury (MOI) in aged rats.

Methods: Male Sprague-Dawley (SD) rats were used. The young rats were divided into young control group (YCG, n=10) and young model group (YMG, n=15), and the elderly, aged control group (ACG, n=10) and aged model group (AMG, n=25). The model of rats with Klebsiella pneumoniae pneumonia was produced by tracheal instillation of the bacteria, and injury to various organs was observed and evaluated with changes in biochemical parameters, pathological pictures and mortality.

Results: Between YMG and AMG, the mortality rates were 33.33% (5/15) and 60.00% (15/25), respectively, at 24 hours after instillation of the bacteria. Compared with YCG and ACG, the neutrophil percentage and white blood cell (WBC) counts in peripheral blood increased significantly in YMG and AMG groups (all P<0.01), the rates of dysfunction of the lungs, the heart and the liver, were 60%-100%. The respiratory dysfunction was evidenced by an increase in the arterial partial pressure of carbon dioxide (PaCO(2), P<0.01), and a decrease in the arterial partial pressure of oxygen (PaO(2), P<0.05 or P<0.01). Myocardial dysfunction was shown by a the sharp increase in creatine kinase (CK), creatine kinase isoenzyme MB (CK-MB) and lactate dehydrogenase (LDH), and that of the liver by changes in alanine aminotransferase (ALT) and aspartate aminotransferase (AST, P<0.05 or P<0.01). The pathological changes under light and electronic microscopy were obvious, and the main feature was infiltration of the inflammatory cells. Compared with YMG, PaO(2) in AMG dropped significantly, PaCO(2) increased, CK, CK-MB, LDH, ALT and AST also increased significantly (P<0.05 or P<0.01). The scores of pathological injury in the lungs, the heart and the small intestine in the AMG were obviously higher than that in YMG group (all P<0.05), and the same was trend in the liver and the kidney.

Conclusion: The model of bacterial MOI in aged rats is reproduced successfully, and it mimics the pathogenesis of multiple organ dysfunction syndrome (MODS) which initiates from infection in the lungs. The model is simple and convenient to replicate with a high success rate. The MOI in the aged rats is characterized by the severity of the organ injury and a high mortality rate.

Download full-text PDF

Source

Publication Analysis

Top Keywords

multiple organ
8
organ injury
8
klebsiella pneumoniae
8
pneumoniae pneumonia
8
control group
8
model group
8
instillation bacteria
8
ymg amg
8
model
5
model multiple
4

Similar Publications

Background: Sarcoidosis, a granulomatous inflammatory disease, exhibits diverse clinical manifestations, often affecting multiple organs. Diagnostic challenges arise due to its similarities with tuberculosis, particularly in high-burden areas. Differentiating between the two relies on clinical judgment, laboratory tests, imaging, and invasive procedures.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a major public health challenge globally. This study aimed to analyze the antibacterial consumption (ATBc), and the incidence of multidrug-resistant organisms (MDRO), focusing on pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE group), in a Brazilian tertiary care hospital.

View Article and Find Full Text PDF

Objective: Frailty has become an increasingly recognized perioperative risk stratification tool. While frailty has been strongly correlated with worsening surgical outcomes, the individual determinants of frailty have rarely been investigated in the setting of aortic disease. The aim of this study was to examine the determinants of an 11-factor modified frailty index (mFI-11) on mortality and postoperative complications in patients undergoing endovascular aortic aneurysm repair (EVAR).

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Circadian Rhythm, Hypoxia, and Cellular Senescence: From Molecular Mechanisms to Targeted Strategies.

Eur J Pharmacol

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!