Aim: Folate is vital for cell growth and development through its important role in one-carbon metabolism - an essential process in the synthesis of amino acids and nucleic acids. Folate pathway genes have been considered as therapeutic targets of drugs for the treatment of cancer and other diseases. Racial and ethnic disparities of folate metabolism and outcome of antifolate therapies have been reported. In this study, we evaluate the genetic regulation for expression and alternative splicing of folate related genes in HapMap lymphoblastoid cell lines (LCLs) of individuals of European and African descent.
Materials & Methods: Gene and exon level expression and alternative splicing of folate pathway genes were compared in LCLs derived from the Centre d'Etude du Polymorphisme Humain (CEPH) from Utah (CEU) and the Yoruba from Ibadan (YRI) using a permutation-based test. A genome-wide association study was performed to search for SNPs associated with folate pathway gene expressions and alternative splicing in the combined population samples.
Results: A total of 52 folate pathway genes were evaluated in the analysis of which 46 were expressed in the LCLs. There were 12 genes (26%) with differential gene-level expression and 23 genes (50%) with differential alternative splicing for exons or UTRs between the CEU and the YRI (permutation p
Conclusion: Our study suggests that LCLs are an in vitro system suitable to evaluate the expression levels of folate pathway genes. The differential transcript-level expressions and the differentially alternative splicing events of exons or UTRs and associated SNP markers in 2 populations will enhance our understanding of the folate pathway and, thus, facilitate research in the areas of nutrition and folate metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709842 | PMC |
http://dx.doi.org/10.2217/pgs.09.8 | DOI Listing |
Acta Naturae
January 2024
St Petersburg University, St. Petersburg, 199034 Russian Federation.
Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.
View Article and Find Full Text PDFCell Signal
January 2025
Jinhua Advanced Research Institute, Jinhua 321019, China. Electronic address:
Vascular calcification(VC) significantly increases the risk of cardiovascular events, leading to thickening of the myocardium and arteries, coronary heart disease, heart failure, and potentially triggering myocardial infarction and sudden cardiac death. Although VC is a reversible process, there are currently no methods or medications in clinical practice that can completely reverse or cure it. The current treatment strategies primarily focus on slowing the progression of VC and exploring new diagnostic and therapeutic approaches, making the identification of early diagnostic markers for VC particularly important.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:
RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901.
In the pregenomic era, scientists were puzzled by the observation that haploid genome size (the C-value) did not correlate well with organismal complexity. This phenomenon, called the "C-value paradox," is mostly explained by the fact that protein-coding genes occupy only a small fraction of eukaryotic genomes. When the first genome sequences became available, scientists were even more surprised by the fact that the number of genes (G-value) was also a poor predictor of complexity, which gave rise to the "G-value paradox.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!