We performed particle size and particle size distribution measurements for L-cysteine-stabilized ZnS/Mn nanoparticles in the size region below 10 nm. For this we applied transmission electron microscopy (TEM), analytical ultracentrifugation (AUC), dynamic light scattering (DLS), and asymmetric flow field flow fractionation (aF-FFF) measurements, and we calculated particle sizes with the help of X-ray diffraction (XRD) patterns and the shift of the band gap absorption in the UV-vis spectrum. The different methods are explained, and their limitations are discussed, with the conclusion that only a combination of different techniques can yield a realistic and complete picture about the size distribution of the sample. From these methods TEM, AUC, DLS, and aF-FFF measure the actual particle size distribution either in dispersion or after drying of the sample, whereas the particle size obtained from XRD patterns and with the help of the band gap widening corresponds to the average size of the crystal domains within the particles. We obtained particle size distributions with their maximum between 3 and 7 nm and a mean crystallite size of 3.5-4 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac900043y | DOI Listing |
Sci Rep
January 2025
Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.
The supercritical antisolvent (SAS) method can effectively improve the bioavailability of poorly water-soluble drugs. However, the current supercritical equipment and processes were not fully developed, making industrialization difficult to achieve. Therefore, an externally adjustable annular gap nozzle and its supporting equipment were designed.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
National Research Council of Italy, Rome, Italy. Electronic address:
The paper presents the variations of space radiation (primary and secondary galactic cosmic rays (GCR) absorbed dose rate in silicon and flux) measured during the first-ever commercial suborbital flight of the Virgin Galactic (VG) SpaceShipTwo Unity on 29 June 2023. A Portable Dosimeter-Spectrometer Liulin-CNR-VG is used. It is developed in the Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS) under a scientific contract with National Research Council of Italy (CNR), Italy.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:
Microplastics (MPs) are ubiquitous environmental pollutants that have garnered significant attention due to their small particle size, resistance to degradation and large specific surface area, which makes it easy to adsorb various pollutants, particularly heavy metals. Arsenic (As), a common metal poisons, poses significant risks due to its widespread industrial use. When MPs and As co-exist in the environment, they can exert combined toxic effects on organisms, affecting various systems, including the nervous system.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India. Electronic address:
The objective of this work was to explore the Teriflunomide (TFM) -loaded chondroitin sulfate hybridized zein nanoparticles (TZCNPs) for the treatment of triple-negative breast cancer (TNBC). The particle size, PDI and %EE of optimized TZCNPs was found 208.7 ± 7.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China. Electronic address:
Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!