Evolution of the triplet excited state in Pt(II) perylenediimides.

J Phys Chem A

Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.

Published: May 2009

Here, we present the ultrafast dynamics of a series of metal complexes developed to permit access to the perylenediimide (PDI) triplet manifold that preserves the desirable colorfastness and visible light-absorption properties associated with these dyes. To this end, three Pt(II) complexes each bearing two PDI moieties tethered to the metal center through acetylide linkages emanating from one of the PDI bay positions have been thoroughly examined by static spectroscopic methods, electrochemistry, laser flash photolysis, and ultrafast transient absorption spectrometry. Upon ligation to the Pt(II) center, the bright singlet-state fluorescence (Phi = 0.91, tau = 4.53 ns) of the free PDI-CCH chromophore is quantitatively quenched, and no long wavelength photoluminescence is observed from any of the Pt(II)-PDI complexes in deaerated solutions. Ultrafast transient measurements reveal that upon ligation of PDI-CCH to the Pt(II) center, picosecond intersystem crossing (tau = 2-4 ps) from the (1)PDI excited state is followed by vibrational cooling (tau = 12-19 ps) of the hot (3)PDI excited state, whereas only singlet-state dynamics, including stimulated emission, were observed in the "free" PDI-CCH moiety. In each of the Pt-PDI chromophores, quantitatively similar transient absorption difference spectra were obtained; the only distinguishing characteristic is in their single-exponential lifetimes (tau = 246 ns, 1.0 mus, and 710 ns). These long-lived (3)PDI excited states are clearly poised for bimolecular electron and energy transfer schemes. In the present case, the latter is demonstrated through bimolecular sensitization of singlet oxygen phosphorescence at approximately 1270 nm in aerated dichloromethane solutions, producing reasonable (1)O(2) quantum yields (Phi(Delta) = 0.40-0.55) across this series of molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp9012762DOI Listing

Publication Analysis

Top Keywords

excited state
12
ultrafast transient
8
transient absorption
8
ptii center
8
3pdi excited
8
evolution triplet
4
excited
4
triplet excited
4
ptii
4
state ptii
4

Similar Publications

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

The spectrum of carbon monoxide is important for astrophysical media, such as planetary atmospheres, interstellar space, exoplanetary and stellar atmospheres; it also important in plasma physics, laser physics and combustion. Interpreting its spectral signature requires a deep and thorough understanding of its absorption and emission properties. A new accurate spectroscopic model for the ground and electronically-excited states of the CO molecule computed at the aug-cc-pV5Z CASSCF/MRCI+Q level is reported.

View Article and Find Full Text PDF

Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .

View Article and Find Full Text PDF

Introduction: The (EMB) theory, a major causal hypothesis of autism (ASD: autism spectrum disorder), attributes excess androgens during early development as one of the causes. While studies have generally followed the EMB theory in females at birth, the co-occurrence of ASD in males at birth has been observed in conditions that are assumed to be associated with reduced androgen action during early development, including Klinefelter syndrome (KS) and sexual minorities. ASD is also associated with atypical sensory sensitivity, synesthesia, and savant syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!